Skip to main content

Advertisement

Log in

Using the allergic immune system to target cancer: activity of IgE antibodies specific for human CD20 and MUC1

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Monoclonal antibodies are widely used in the treatment of many B cell lymphomas and certain solid tumors. All currently approved therapeutic monoclonal antibodies are of the immunoglobulin G (IgG) isotype. We hypothesized that tumor-specific monoclonal antibodies of the IgE isotype may serve as effective cancer therapeutics. To test this hypothesis, we produced mouse–human chimeric IgE antibodies specific for the human B cell antigen CD20 and the epithelial antigen MUC1. We demonstrate here that anti-hCD20 IgE antibodies have in vitro cytotoxic activity when used with purified allergic effector cells derived from umbilical cord blood. At an effector-tumor ratio of 2:1, mast cells and tumor-specific IgE induced a 2.5-fold increase in tumor cell death, as compared to control IgE. Similar results were observed when eosinophils were used as effector cells. In an in vivo murine model of breast carcinoma, administration of anti-hMUC1 IgE reduced the growth of MUC1+ tumors by 25–30 % in hFcεRI transgenic mice. In contrast, local production of IgE and cytokines chemotactic for macrophages, eosinophils and mast cells led to complete tumor eradication. These results suggest that allergic effector cells activated by IgE and cell surface antigens have the capacity to induce tumor cell death in vitro and in vivo. The use of chimeric antibodies and hFcεRI transgenic mice will greatly enhance investigations in the nascent field of allergo-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ANOVA:

Analysis of variance

CBEos:

Cord blood-derived eosinophils

CBMC:

Cord blood-derived mast cell

CFSE:

Carboxyfluorescein diacetate succinimidyl ester

E:T:

Effector to target ratio

FcεRI:

Fragment crystallizable epsilon receptor I

hCD20:

Human CD20

hMUC1:

Human mucin 1

hSCF:

Human stem cell factor

Ig:

Immunoglobulin

IL:

Interleukin

i.p.:

Intraperitoneal

i.v.:

Intravenous

mAb:

Monoclonal antibody

MAHA:

Mouse anti-human antibody

PBMC:

Peripheral blood mononuclear cell

PI:

Propidium iodide

SAM:

Significance analysis of microarrays

s.c.:

Subcutaneous

SCID:

Severe combined immunodeficiency

SD:

Standard deviation

TRAIL:

TNF-related apoptosis inducing ligand

TNF:

Tumor necrosis factor

References

  1. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki E, Niwa R, Saji S, Muta M, Hirose M, Iida S, Shiotsu Y, Satoh M, Shitara K, Kondo M, Toi M (2007) A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin Cancer Res 13:1875–1882

    Article  PubMed  CAS  Google Scholar 

  3. Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K (2004) Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Clin Cancer Res 10:6248–6255

    Article  PubMed  CAS  Google Scholar 

  4. Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Vijh S, Johnson S, Bonvini E, Koenig S (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67:8882–8890

    Article  PubMed  CAS  Google Scholar 

  5. Bruggemann M, Williams GT, Bindon CI, Clark MR, Walker MR, Jefferis R, Waldmann H, Neuberger MS (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166:1351–1361

    Article  PubMed  CAS  Google Scholar 

  6. Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR, Zurawski VR Jr, Joseph M, Capron M, Gilbert M, Murphy GF, Korngold R (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29:3527–3537

    Article  PubMed  CAS  Google Scholar 

  7. Karagiannis SN, Wang Q, East N, Burke F, Riffard S, Bracher MG, Thompson RG, Durham SR, Schwartz LB, Balkwill FR, Gould HJ (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33:1030–1040

    Article  PubMed  CAS  Google Scholar 

  8. Riemer AB, Untersmayr E, Knittelfelder R, Duschl A, Pehamberger H, Zielinski CC, Scheiner O, Jensen-Jarolim E (2007) Active induction of tumor-specific IgE antibodies by oral mimotope vaccination. Cancer Res 67:3406–3411

    Article  PubMed  CAS  Google Scholar 

  9. Shields RL, Whether WR, Zioncheck K, O’Connell L, Fendly B, Presta LG, Thomas D, Saban R, Jardieu P (1995) Inhibition of allergic reactions with antibodies to IgE. Int Arch Allergy Immunol 107:308–312

    Article  PubMed  CAS  Google Scholar 

  10. Kempuraj D, Saito H, Kaneko A, Fukagawa K, Nakayama M, Toru H, Tomikawa M, Tachimoto H, Ebisawa M, Akasawa A, Miyagi T, Kimura H, Nakajima T, Tsuji K, Nakahata T (1999) Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood 93:3338–3346

    PubMed  CAS  Google Scholar 

  11. Dombrowicz D, Brini AT, Flamand V, Hicks E, Snouwaert JN, Kinet JP, Koller BH (1996) Anaphylaxis mediated through a humanized high affinity IgE receptor. J Immunol 157:1645–1651

    PubMed  CAS  Google Scholar 

  12. Busler DE, Li SW (1996) Rapid screening of transgenic type II and type XI collagen knock-out mice with three-primer PCR. Biotechniques 21:1002–1004

    PubMed  CAS  Google Scholar 

  13. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  14. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    PubMed  CAS  Google Scholar 

  15. Clark EA, Shu G, Ledbetter JA (1985) Role of the Bp35 cell surface polypeptide in human B-cell activation. Proc Natl Acad Sci USA 82:1766–1770

    Article  PubMed  CAS  Google Scholar 

  16. Mease PJ (2008) B cell-targeted therapy in autoimmune disease: rationale, mechanisms, and clinical application. J Rheumatol 35:1245–1255

    PubMed  CAS  Google Scholar 

  17. Price MR, Rye PD, Petrakou E, Murray A, Brady K, Imai S, Haga S, Kiyozuka Y, Schol D, Meulenbroek MF, Snijdewint FG, von Mensdorff-Pouilly S, Verstraeten RA, Kenemans P, Blockzjil A, Nilsson K, Nilsson O, Reddish M, Suresh MR, Koganty RR, Fortier S, Baronic L, Berg A, Longenecker MB, Hilgers J et al (1998) Summary report on the ISOBM TD-4 workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif., November 17–23, 1996. Tumour Biol 19(Suppl 1):1–20

    Google Scholar 

  18. Ohashi R, Singh V, Hamel JP (2001) Perfusion culture in disposable bioreactors. In Genetic Engineering News, pp 40–42

  19. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  PubMed  CAS  Google Scholar 

  20. Karagiannis SN, Bracher MG, Hunt J, McCloskey N, Beavil RL, Beavil AJ, Fear DJ, Thompson RG, East N, Burke F, Moore RJ, Dombrowicz DD, Balkwill FR, Gould HJ (2007) IgE-antibody-dependent immunotherapy of solid tumors: cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J Immunol 179:2832–2843

    PubMed  CAS  Google Scholar 

  21. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    Article  PubMed  CAS  Google Scholar 

  22. Gould HJ, Sutton BJ (2008) IgE in allergy and asthma today. Nat Rev Immunol 8:205–217

    Article  PubMed  CAS  Google Scholar 

  23. Tsai M, Grimbaldeston MA, Yu M, Tam SY, Galli SJ (2005) Using mast cell knock-in mice to analyze the roles of mast cells in allergic responses in vivo. Chem Immunol Allergy 87:179–197

    Article  PubMed  CAS  Google Scholar 

  24. Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25:235–241

    Article  PubMed  CAS  Google Scholar 

  25. Henderson WR, Chi EY, Jong EC, Klebanoff SJ (1981) Mast cell-mediated tumor-cell cytotoxicity. Role of the peroxidase system. J Exp Med 153:520–533

    Article  PubMed  CAS  Google Scholar 

  26. Benyon RC, Bissonnette EY, Befus AD (1991) Tumor necrosis factor-alpha dependent cytotoxicity of human skin mast cells is enhanced by anti-IgE antibodies. J Immunol 147:2253–2258

    PubMed  CAS  Google Scholar 

  27. Ozdemir O (2007) Evaluation of human mast cell-mediated cytotoxicity by DIOC18 target cell labeling in flow cytometry. J Immunol Methods 319:98–103

    Article  PubMed  Google Scholar 

  28. Saito H, Ebisawa M, Tachimoto H, Shichijo M, Fukagawa K, Matsumoto K, Iikura Y, Awaji T, Tsujimoto G, Yanagida M, Uzumaki H, Takahashi G, Tsuji K, Nakahata T (1996) Selective growth of human mast cells induced by Steel factor, IL-6, and prostaglandin E2 from cord blood mononuclear cells. J Immunol 157:343–350

    PubMed  CAS  Google Scholar 

  29. Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, Aljama A (2000) Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 88:1544–1548

    Article  PubMed  CAS  Google Scholar 

  30. Iwasaki K, Torisu M, Fujimura T (1986) Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer. Cancer 58:1321–1327

    Article  PubMed  CAS  Google Scholar 

  31. Pretlow TP, Keith EF, Cryar AK, Bartolucci AA, Pitts AM, Pretlow TG 2nd, Kimball PM, Boohaker EA (1983) Eosinophil infiltration of human colonic carcinomas as a prognostic indicator. Cancer Res 43:2997–3000

    PubMed  CAS  Google Scholar 

  32. Zardini DM, Heuschling P, Gallois A, Bueb JL, Tschirhart EJ (1997) Human umbilical cord blood-derived eosinophils cultured in the presence of IL-3 and IL-5 respond to fMLP with [Ca2+]i variation and O2- production. J Immunol Methods 205:1–9

    Article  PubMed  CAS  Google Scholar 

  33. Swaminathan GJ, Myszka DG, Katsamba PS, Ohnuki LE, Gleich GJ, Acharya KR (2005) Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 44:14152–14158

    Article  PubMed  CAS  Google Scholar 

  34. Carreras E, Boix E, Rosenberg HF, Cuchillo CM, Nogues MV (2003) Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42:6636–6644

    Article  PubMed  CAS  Google Scholar 

  35. Sayama K, Diehn M, Matsuda K, Lunderius C, Tsai M, Tam SY, Botstein D, Brown PO, Galli SJ (2002) Transcriptional response of human mast cells stimulated via the Fc(epsilon)RI and identification of mast cells as a source of IL-11. BMC Immunol 3:5

    Article  PubMed  Google Scholar 

  36. Green MC, Murray JL, Hortobagyi GN (2000) Monoclonal antibody therapy for solid tumors. Cancer Treat Rev 26:269–286

    Article  PubMed  CAS  Google Scholar 

  37. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH (1978) Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38:3174–3181

    PubMed  CAS  Google Scholar 

  38. Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 breast tumor model. Curr Protoc Immunol Chapter 20:Unit 20 22

  39. Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17:931–972

    Article  PubMed  CAS  Google Scholar 

  40. Kayaba H, Dombrowicz D, Woerly G, Papin JP, Loiseau S, Capron M (2001) Human eosinophils and human high affinity IgE receptor transgenic mouse eosinophils express low levels of high affinity IgE receptor, but release IL-10 upon receptor activation. J Immunol 167:995–1003

    PubMed  CAS  Google Scholar 

  41. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    Article  PubMed  CAS  Google Scholar 

  42. Sanderson CJ (1988) Interleukin-5: an eosinophil growth and activation factor. Dev Biol Stand 69:23–29

    PubMed  CAS  Google Scholar 

  43. Filley WV, Holley KE, Kephart GM, Gleich GJ (1982) Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet 2:11–16

    Article  PubMed  CAS  Google Scholar 

  44. Butterworth AE, Vadas MA, Wassom DL, Dessein A, Hogan M, Sherry B, Gleich GJ, David JR (1979) Interactions between human eosinophils and schistosomula of Schistosoma mansoni. II. The mechanism of irreversible eosinophil adherence. J Exp Med 150:1456–1471

    Article  PubMed  CAS  Google Scholar 

  45. Valent P, Bettelheim P (1992) Cell surface structures on human basophils and mast cells: biochemical and functional characterization. Adv Immunol 52:333–423

    Article  PubMed  CAS  Google Scholar 

  46. Kitamura T, Kometani K, Hashida H, Matsunaga A, Miyoshi H, Hosogi H, Aoki M, Oshima M, Hattori M, Takabayashi A, Minato N, Taketo MM (2007) SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39:467–475

    Article  PubMed  CAS  Google Scholar 

  47. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104:19977–19982

    Article  PubMed  CAS  Google Scholar 

  48. Tepper RI, Pattengale PK, Leder P (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57:503–512

    Article  PubMed  CAS  Google Scholar 

  49. Tepper RI, Coffman RL, Leder P (1992) An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257:548–551

    Article  PubMed  CAS  Google Scholar 

  50. Kruger-Krasagakes S, Li W, Richter G, Diamantstein T, Blankenstein T (1993) Eosinophils infiltrating interleukin-5 gene-transfected tumors do not suppress tumor growth. Eur J Immunol 23:992–995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J.P. Kinet from Harvard for the hFcεRI transgenic mice; H. Kita from the Mayo Clinic for helpful advice on eosinophils; O. Finn from the University of Pittsburgh for the VU-3C6 and VU-4H5 hybridomas; R. Levy from Stanford for the OCI-Ly8 lymphoma line; and Amgen, Inc. for rhSCF and rhIL6. We also thank A. Piliponsky and E. Rios from the laboratory of Stephen Galli and Y. Rosenberg-Hassan from the Stanford Human Immune Monitoring Core for helpful discussion and technical assistance; and R. Levy, S. Galli, E. Engleman and members of the Utz lab for critical review of this manuscript. P.T. was funded by the Agency for Science, Technology and Research (A*STAR) Singapore. J.M. was funded by NIH Grant CA111639-01A1 (NCI) and also supported by a generous gift from Margaret and Richard Yen. P.J.U. was the recipient of a Donald E. and Delia B. Baxter Foundation Career Development Award and was supported by the Dana Foundation, the Floren Family Trust, the Ben May Trust, NIH Grants DK61934, AI50854, AI50865, AR49328, and NHLBI Proteomics Contract HHSN288201000034C.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pearline Zhaoying Teo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, P.Z., Utz, P.J. & Mollick, J.A. Using the allergic immune system to target cancer: activity of IgE antibodies specific for human CD20 and MUC1. Cancer Immunol Immunother 61, 2295–2309 (2012). https://doi.org/10.1007/s00262-012-1299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1299-0

Keywords

Navigation