Advertisement

Cancer Immunology, Immunotherapy

, Volume 61, Issue 8, pp 1155–1167 | Cite as

Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology

  • Claudia A. Dumitru
  • Katrin Moses
  • Sokratis Trellakis
  • Stephan Lang
  • Sven Brandau
Review

Abstract

Accumulating evidence indicates that myeloid cells are critically involved in the pathophysiology of human cancers. In contrast to the well-characterized tumor-associated macrophages, the significance of granulocytes in cancer has only recently begun to emerge. A number of studies found increased numbers of neutrophil granulocytes and granulocytic myeloid-derived suppressor cells (GrMDSCs) both in the peripheral blood and in the tumor tissues of patients with different types of cancer. Most importantly, granulocytes have been linked to poor clinical outcome in cancer patients which suggests that these cells might have important tumor-promoting effects. In this review, we will address in detail the following major topics: (1) neutrophils and GrMDSCs in the peripheral blood of cancer patients—phenotype and functional changes; (2) neutrophils and GrMDSCs in the tumor tissue—potential mechanisms of tumor progression and (3) relevance of neutrophils and GrMDSCs for the clinical outcome of cancer patients. Furthermore, we will discuss the advantages and disadvantages of the current strategies used for identification and monitoring of human MDSCs. We propose a six-color immunophenotyping protocol that discriminates between monocytic MDSCs (MoMDSCs), two subsets of GrMDSCs and two subsets of immature myeloid cells in human cancer patients, thus, allowing for an improved characterization and understanding of these multifaceted cells.

Keywords

Neutrophils MDSC Tumor progression Immunophenotyping 

Notes

Acknowledgments

We thank Kirsten Bruderek (Department of Otorhinolaryngology, University of Duisburg-Essen) for excellent technical support with the immunophenotyping of MDSC from cancer patients.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40PubMedCrossRefGoogle Scholar
  2. 2.
    Donskov F, von der Maase H (2006) Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J Clin Oncol 24:1997–2005PubMedCrossRefGoogle Scholar
  3. 3.
    Schmidt H, Suciu S, Punt CJ, Gore M, Kruit W, Patel P, Lienard D, von der Maase H, Eggermont AM, Keilholz U (2007) Pretreatment levels of peripheral neutrophils and leukocytes as independent predictors of overall survival in patients with American Joint Committee on Cancer Stage IV Melanoma: results of the EORTC 18951 Biochemotherapy Trial. J Clin Oncol 25:1562–1569PubMedCrossRefGoogle Scholar
  4. 4.
    Teramukai S, Kitano T, Kishida Y, Kawahara M, Kubota K, Komuta K, Minato K, Mio T, Fujita Y, Yonei T, Nakano K, Tsuboi M, Shibata K, Furuse K, Fukushima M (2009) Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer 45:1950–1958PubMedCrossRefGoogle Scholar
  5. 5.
    Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16:219–223PubMedCrossRefGoogle Scholar
  6. 6.
    Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY, Zheng L (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54:948–955PubMedCrossRefGoogle Scholar
  7. 7.
    Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32:19–25PubMedCrossRefGoogle Scholar
  8. 8.
    Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689PubMedGoogle Scholar
  9. 9.
    Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR (1997) Increased presence of CD34 + cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 73:663–669PubMedCrossRefGoogle Scholar
  10. 10.
    Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560PubMedCrossRefGoogle Scholar
  11. 11.
    Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61:4756–4760PubMedGoogle Scholar
  12. 12.
    Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802PubMedGoogle Scholar
  13. 13.
    Zhang X, Majlessi L, Deriaud E, Leclerc C, Lo-Man R (2009) Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31:761–771PubMedCrossRefGoogle Scholar
  14. 14.
    Davey MS, Tamassia N, Rossato M, Bazzoni F, Calzetti F, Bruderek K, Sironi M, Zimmer L, Bottazzi B, Mantovani A, Brandau S, Moser B, Eberl M, Cassatella MA (2011) Failure to detect production of IL-10 by activated human neutrophils. Nat Immunol 12:1017–1018PubMedCrossRefGoogle Scholar
  15. 15.
    Reglier H, Arce-Vicioso M, Fay M, Gougerot-Pocidalo MA, Chollet-Martin S (1998) Lack of IL-10 and IL-13 production by human polymorphonuclear neutrophils. Cytokine 10:192–198PubMedCrossRefGoogle Scholar
  16. 16.
    Smedman C, Gardlund B, Nihlmark K, Gille-Johnson P, Andersson J, Paulie S (2009) ELISpot analysis of LPS-stimulated leukocytes: human granulocytes selectively secrete IL-8, MIP-1beta and TNF-alpha. J Immunol Methods 346:1–8PubMedCrossRefGoogle Scholar
  17. 17.
    Azab B, Bhatt VR, Phookan J, Murukutla S, Kohn N, Terjanian T, Widmann WD (2012) Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients. Ann Surg Oncol 19:217–224PubMedCrossRefGoogle Scholar
  18. 18.
    Cho H, Hur HW, Kim SW, Kim SH, Kim JH, Kim YT, Lee K (2009) Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunol Immunother 58:15–23PubMedCrossRefGoogle Scholar
  19. 19.
    Ding PR, An X, Zhang RX, Fang YJ, Li LR, Chen G, Wu XJ, Lu ZH, Lin JZ, Kong LH, Wan DS, Pan ZZ (2010) Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. Int J Colorectal Dis 25:1427–1433PubMedCrossRefGoogle Scholar
  20. 20.
    Aliustaoglu M, Bilici A, Seker M, Dane F, Gocun M, Konya V, Ustaalioglu BB, Gumus M (2010) The association of pre-treatment peripheral blood markers with survival in patients with pancreatic cancer. Hepatogastroenterology 57:640–645PubMedGoogle Scholar
  21. 21.
    An X, Ding PR, Wang FH, Jiang WQ, Li YH (2011) Elevated neutrophil to lymphocyte ratio predicts poor prognosis in nasopharyngeal carcinoma. Tumour Biol 32:317–324PubMedCrossRefGoogle Scholar
  22. 22.
    Tavares-Murta BM, Mendonca MA, Duarte NL, da Silva JA, Mutao TS, Garcia CB, Murta EF (2010) Systemic leukocyte alterations are associated with invasive uterine cervical cancer. Int J Gynecol Cancer 20:1154–1159PubMedCrossRefGoogle Scholar
  23. 23.
    Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A, Scherag A, Hutte J, Dominas N, Lehnerdt GF, Hoffmann TK, Lang S, Brandau S (2011) Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer 129:2183–2193PubMedCrossRefGoogle Scholar
  24. 24.
    Trellakis S, Farjah H, Bruderek K, Dumitru CA, Hoffmann TK, Lang S, Brandau S (2011) Peripheral blood neutrophil granulocytes from patients with head and neck squamous cell carcinoma functionally differ from their counterparts in healthy donors. Int J Immunopathol Pharmacol 24:683–693PubMedGoogle Scholar
  25. 25.
    Choi J, Suh B, Ahn YO, Kim TM, Lee JO, Lee SH, Heo DS (2012) CD15 +/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumour Biol 33:121–129PubMedCrossRefGoogle Scholar
  26. 26.
    Tanaka F, Goto H, Yokosuka T, Yanagimachi M, Kajiwara R, Naruto T, Nishimaki S, Yokota S (2009) Suppressed neutrophil function in children with acute lymphoblastic leukemia. Int J Hematol 90:311–317PubMedCrossRefGoogle Scholar
  27. 27.
    Uehara M, Sato N (1994) Impaired ability of neutrophils to produce oxygen-derived free radicals in patients with chronic liver disease and hepatocellular carcinoma. Hepatology 20:326–330PubMedCrossRefGoogle Scholar
  28. 28.
    Shirai R, Kadota J, Iida K, Kawakami K, Abe K, Yoshinaga M, Iwashita T, Matsubara Y, Oka M, Kohno S (1998) Immunological competence and nutritional status in patients with lung cancer. Lung 176:363–370PubMedCrossRefGoogle Scholar
  29. 29.
    Kastelan Z, Lukac J, Derezic D, Pasini J, Kusic Z, Sosic H, Kastelan M (2003) Lymphocyte subsets, lymphocyte reactivity to mitogens, NK cell activity and neutrophil and monocyte phagocytic functions in patients with bladder carcinoma. Anticancer Res 23:5185–5189PubMedGoogle Scholar
  30. 30.
    Jablonska E, Piotrowski L, Kiluk M, Jablonski J, Grabowska Z, Markiewicz W (2001) Effect of IL-15 on the secretion of IL-1beta, IL-1Ra and sIL-1RII by PMN from cancer patients. Cytokine 16:173–177PubMedCrossRefGoogle Scholar
  31. 31.
    Jablonska E, Puzewska W, Grabowska Z, Jablonski J, Talarek L (2005) VEGF, IL-18 and NO production by neutrophils and their serum levels in patients with oral cavity cancer. Cytokine 30:93–99PubMedCrossRefGoogle Scholar
  32. 32.
    Jablonska E, Jablonski J, Marcinczyk M, Grabowska Z, Piotrowski L (2008) The release of soluble forms of TRAIL and DR5 by neutrophils of oral cavity cancer patients. Folia Histochem Cytobiol 46:177–183PubMedCrossRefGoogle Scholar
  33. 33.
    Garley M, Jablonska E, Grabowska SZ, Piotrowski L (2009) IL-17 family cytokines in neutrophils of patients with oral epithelial squamous cell carcinoma. Neoplasma 56:96–100PubMedCrossRefGoogle Scholar
  34. 34.
    Jablonska E, Garley M, Jablonski J (2009) The expressions of intrinsic and extrinsic apoptotic pathway proteins in neutrophils of oral cavity cancer patients: a preliminary study. Arch Immunol Ther Exp (Warsz) 57:229–234CrossRefGoogle Scholar
  35. 35.
    De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, Salio M, Middleton M, Cerundolo V (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11:1039–1046PubMedCrossRefGoogle Scholar
  36. 36.
    Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807PubMedCrossRefGoogle Scholar
  37. 37.
    Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553PubMedCrossRefGoogle Scholar
  38. 38.
    Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345PubMedCrossRefGoogle Scholar
  39. 39.
    Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234–243PubMedCrossRefGoogle Scholar
  40. 40.
    van Cruijsen H, van der Veldt AA, Vroling L, Oosterhoff D, Broxterman HJ, Scheper RJ, Giaccone G, Haanen JB, van den Eertwegh AJ, Boven E, Hoekman K, de Gruijl TD (2008) Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c + dendritic cell frequency predicts progression-free survival. Clin Cancer Res 14:5884–5892PubMedCrossRefGoogle Scholar
  41. 41.
    Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate 70:443–455PubMedGoogle Scholar
  42. 42.
    Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM (2010) Increased level of both CD4 + FOXP3 + regulatory T cells and CD14 + HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72:540–547PubMedCrossRefGoogle Scholar
  43. 43.
    Yuan XK, Zhao XK, Xia YC, Zhu X, Xiao P (2011) Increased circulating immunosuppressive CD14(+)HLA-DR(-/low) cells correlate with clinical cancer stage and pathological grade in patients with bladder carcinoma. J Int Med Res 39:1381–1391PubMedGoogle Scholar
  44. 44.
    Mundy-Bosse BL, Young GS, Bauer T, Binkley E, Bloomston M, Bill MA, Bekaii-Saab T, Carson WE III, Lesinski GB (2011) Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4 T cells from patients with GI malignancy. Cancer Immunol Immunother 60:1269–1279PubMedCrossRefGoogle Scholar
  45. 45.
    Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157PubMedCrossRefGoogle Scholar
  46. 46.
    Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048PubMedGoogle Scholar
  47. 47.
    Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, Gillanders WE, Linehan DC, Goedegebuure P (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother. 2012 Jan 4 (Epub ahead of print)Google Scholar
  48. 48.
    Srivastava MK, Bosch JJ, Thompson JA, Ksander BR, Edelman MJ, Ostrand-Rosenberg S (2008) Lung cancer patients’ CD4(+) T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunol Immunother 57:1493–1504PubMedCrossRefGoogle Scholar
  49. 49.
    Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC, Chu Y, Chung FT, Kuo CH, Lee KY, Lin SM, Lin HC, Wang CH, Yu CT, Kuo HP (2010) Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b +/CD14/CD15 +/CD33 + myeloid-derived suppressor cells and CD8 + T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer ResClin Oncol 136:35–45CrossRefGoogle Scholar
  50. 50.
    McKenna KC, Beatty KM, Bilonick RA, Schoenfield L, Lathrop KL, Singh AD (2009) Activated CD11b + CD15 + granulocytes increase in the blood of patients with uveal melanoma. Invest Ophthalmol Vis Sci 50:4295–4303PubMedCrossRefGoogle Scholar
  51. 51.
    Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P, Rosser C, Vieweg J, Gilbert SM, Kusmartsev S (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130:1109–1119PubMedCrossRefGoogle Scholar
  52. 52.
    Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13:591–599PubMedCrossRefGoogle Scholar
  53. 53.
    Sippel TR, White J, Nag K, Tsvankin V, Klaassen M, Kleinschmidt-Demasters BK, Waziri A (2011) Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17:6992–7002PubMedCrossRefGoogle Scholar
  54. 54.
    Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, Lang S (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89:311–317PubMedCrossRefGoogle Scholar
  55. 55.
    Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430PubMedCrossRefGoogle Scholar
  56. 56.
    Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, Lin Y, Dietz AB, Forsyth PA, Yong VW, Parney IF (2010) Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol 12:351–365PubMedCrossRefGoogle Scholar
  57. 57.
    Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G, Garrett-Mayer E, Montero AJ, Bronte V, Mandruzzato S (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265PubMedCrossRefGoogle Scholar
  58. 58.
    Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453PubMedCrossRefGoogle Scholar
  59. 59.
    Daud AI, Mirza N, Lenox B, Andrews S, Urbas P, Gao GX, Lee JH, Sondak VK, Riker AI, Deconti RC, Gabrilovich D (2008) Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J Clin Oncol 26:3235–3241PubMedCrossRefGoogle Scholar
  60. 60.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedCrossRefGoogle Scholar
  61. 61.
    Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278PubMedCrossRefGoogle Scholar
  62. 62.
    Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307PubMedCrossRefGoogle Scholar
  63. 63.
    Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V, Horng W, Fridlender G, Bayuh R, Worthen GS, Albelda SM (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7:31524CrossRefGoogle Scholar
  64. 64.
    Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181PubMedCrossRefGoogle Scholar
  65. 65.
    Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P (2009) IL4Ralpha + myeloid-derived suppressor cell expansion in cancer patients. J. Immunol. 182:6562–6568PubMedCrossRefGoogle Scholar
  66. 66.
    Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103:12493–12498PubMedCrossRefGoogle Scholar
  67. 67.
    Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120:1151–1164PubMedCrossRefGoogle Scholar
  68. 68.
    Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, Deryugina EI (2011) Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179:1455–1470PubMedCrossRefGoogle Scholar
  69. 69.
    Dumitru CA, Fechner MK, Hoffmann TK, Lang S, Brandau S (2012) A novel p38-MAPK signaling axis modulates neutrophil biology in head and neck cancer. J Leukoc Biol. 2012 Jan 18 (Epub ahead of print)Google Scholar
  70. 70.
    Tazawa H, Okada F, Kobayashi T, Tada M, Mori Y, Une Y, Sendo F, Kobayashi M, Hosokawa M (2003) Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. Am J Pathol 163:2221–2232PubMedCrossRefGoogle Scholar
  71. 71.
    Shamamian P, Schwartz JD, Pocock BJ, Monea S, Whiting D, Marcus SG, Mignatti P (2001) Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and angiogenesis. J Cell Physiol 189:197–206PubMedCrossRefGoogle Scholar
  72. 72.
    Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904PubMedCrossRefGoogle Scholar
  73. 73.
    Hill EK, Sandbo S, Abramsohn E, Makelarski J, Wroblewski K, Wenrich ER, McCoy S, Temkin SM, Yamada SD, Lindau ST (2011) Assessing gynecologic and breast cancer survivors’ sexual health care needs. Cancer 117:2643–2651PubMedCrossRefGoogle Scholar
  74. 74.
    Imai Y, Kubota Y, Yamamoto S, Tsuji K, Shimatani M, Shibatani N, Takamido S, Matsushita M, Okazaki K (2005) Neutrophils enhance invasion activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells: an in vitro study. J Gastroenterol Hepatol 20:287–293PubMedCrossRefGoogle Scholar
  75. 75.
    Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA 104:20262–20267PubMedCrossRefGoogle Scholar
  76. 76.
    Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F (2010) Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp Cell Res 316:138–148PubMedCrossRefGoogle Scholar
  77. 77.
    Tazzyman S, Barry ST, Ashton S, Wood P, Blakey D, Lewis CE, Murdoch C (2011) Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. Int J Cancer 129:847–858PubMedCrossRefGoogle Scholar
  78. 78.
    Wada Y, Yoshida K, Tsutani Y, Shigematsu H, Oeda M, Sanada Y, Suzuki T, Mizuiri H, Hamai Y, Tanabe K, Ukon K, Hihara J (2007) Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncol Rep 17:161–167PubMedGoogle Scholar
  79. 79.
    Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636PubMedCrossRefGoogle Scholar
  80. 80.
    Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek G, Brabletz T, Kirchner T (2001) The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159:1613–1617PubMedCrossRefGoogle Scholar
  81. 81.
    Dumitru CA, Gholaman H, Trellakis S, Bruderek K, Dominas N, Gu X, Bankfalvi A, Whiteside TL, Lang S, Brandau S (2011) Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation. Int J Cancer 129:859–869PubMedCrossRefGoogle Scholar
  82. 82.
    Rotondo R, Barisione G, Mastracci L, Grossi F, Orengo AM, Costa R, Truini M, Fabbi M, Ferrini S, Barbieri O (2009) IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer 125:887–893PubMedCrossRefGoogle Scholar
  83. 83.
    Wu Y, Zhao Q, Peng C, Sun L, Li XF, Kuang DM (2011) Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3 K activation loop. J Pathol 225:438–447PubMedCrossRefGoogle Scholar
  84. 84.
    Wislez M, Rabbe N, Marchal J, Milleron B, Crestani B, Mayaud C, Antoine M, Soler P, Cadranel J (2003) Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res 63:1405–1412PubMedGoogle Scholar
  85. 85.
    Shoenfeld Y, Tal A, Berliner S, Pinkhas J (1986) Leukocytosis in non hematological malignancies–a possible tumor-associated marker. J Cancer Res Clin Oncol 111:54–58PubMedCrossRefGoogle Scholar
  86. 86.
    Halazun KJ, Aldoori A, Malik HZ, Al-Mukhtar A, Prasad KR, Toogood GJ, Lodge JP (2008) Elevated preoperative neutrophil to lymphocyte ratio predicts survival following hepatic resection for colorectal liver metastases. Eur J Surg Oncol 34:55–60PubMedCrossRefGoogle Scholar
  87. 87.
    Halazun KJ, Hardy MA, Rana AA, Woodland DC, Luyten EJ, Mahadev S, Witkowski P, Siegel AB, Brown RS Jr, Emond JC (2009) Negative impact of neutrophil-lymphocyte ratio on outcome after liver transplantation for hepatocellular carcinoma. Ann Surg 250:141–151PubMedCrossRefGoogle Scholar
  88. 88.
    Gomez D, Farid S, Malik HZ, Young AL, Toogood GJ, Lodge JP, Prasad KR (2008) Preoperative neutrophil-to-lymphocyte ratio as a prognostic predictor after curative resection for hepatocellular carcinoma. World J Surg 32:1757–1762PubMedCrossRefGoogle Scholar
  89. 89.
    Shimada H, Takiguchi N, Kainuma O, Soda H, Ikeda A, Cho A, Miyazaki A, Gunji H, Yamamoto H, Nagata M (2010) High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer 13:170–176PubMedCrossRefGoogle Scholar
  90. 90.
    Ohno Y, Nakashima J, Ohori M, Hatano T, Tachibana M (2010) Pretreatment neutrophil-to-lymphocyte ratio as an independent predictor of recurrence in patients with nonmetastatic renal cell carcinoma. J Urol 184:873–878PubMedCrossRefGoogle Scholar
  91. 91.
    Sharaiha RZ, Halazun KJ, Mirza F, Port JL, Lee PC, Neugut AI, Altorki NK, Abrams JA (2011) Elevated preoperative neutrophil:lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Ann Surg Oncol 18:3362–3369PubMedCrossRefGoogle Scholar
  92. 92.
    Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H (2009) Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 27:4709–4717PubMedCrossRefGoogle Scholar
  93. 93.
    Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS, Xu YF (2011) Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 54:497–505PubMedCrossRefGoogle Scholar
  94. 94.
    Ilie M, Hofman V, Ortholan C, Bonnetaud C, Coelle C, Mouroux J, Hofman P (2011) Predictive clinical outcome of the intratumoral CD66b-positive neutrophil- to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer 118:1726–1737PubMedCrossRefGoogle Scholar
  95. 95.
    Jensen TO, Schmidt H, Moller HJ, Donskov F, Hoyer M, Sjoegren P, Christensen IJ, Steiniche T (2011) Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer. 2011 Sep 22 (Epub ahead of print)Google Scholar
  96. 96.
    Fossati G, Ricevuti G, Edwards SW, Walker C, Dalton A, Rossi ML (1999) Neutrophil infiltration into human gliomas. Acta Neuropathol 98:349–354PubMedCrossRefGoogle Scholar
  97. 97.
    Schwaller J, Schneider P, Mhawech-Fauceglia P, McKee T, Myit S, Matthes T, Tschopp J, Donze O, Le Gal FA, Huard B (2007) Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood 109:331–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Claudia A. Dumitru
    • 1
  • Katrin Moses
    • 1
  • Sokratis Trellakis
    • 1
  • Stephan Lang
    • 1
  • Sven Brandau
    • 1
  1. 1.Department of OtorhinolaryngologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations