Cancer Immunology, Immunotherapy

, Volume 61, Issue 12, pp 2333–2342 | Cite as

Induction of T cell responses and recruitment of an inflammatory dendritic cell subset following tumor immunotherapy with Mycobacterium smegmatis

  • Fenella J. Rich
  • Sabine Kuhn
  • Evelyn J. Hyde
  • Jacquie L. Harper
  • Franca RoncheseEmail author
  • Joanna R. KirmanEmail author
Original article


Mycobacteria and their cell wall components have been used with varying degrees of success to treat tumors, and Mycobacterium bovis BCG remains in use as a standard treatment for superficial bladder cancer. Mycobacterial immunotherapy is very effective in eliciting local immune responses against solid tumors when administered topically; however, its effectiveness in eliciting adaptive immune responses has been variable. Using a subcutaneous mouse thymoma model, we investigated whether immunotherapy with Mycobacterium smegmatis, a fast-growing mycobacterium of low pathogenicity, induces a systemic adaptive immune response. We found that M. smegmatis delivered adjacent to the tumor site elicited a systemic anti-tumor immune response that was primarily mediated by CD8+ T cells. Of note, we identified a CD11c+CD40intCD11bhiGr-1+ inflammatory DC population in the tumor-draining lymph nodes that was found only in mice treated with M. smegmatis. Our data suggest that, rather than rescuing the function of the DC already present in the tumor and/or tumor-draining lymph node, M. smegmatis treatment may promote anti-tumor immune responses by inducing the involvement of a new population of inflammatory cells with intact function.


Mycobacterium smegmatis Immunotherapy Dendritic cell Thymoma Mycobacteria BCG 



This work was supported by research grants from the Cancer Society of New Zealand and from the Malaghan Institute of Medical Research. Joanna Kirman is the Wellington Medical Research Foundation Malaghan Haematology Fellow; Sabine Kuhn was supported by a PhD scholarship from DAAD and Victoria University of Wellington. The authors thank the Biomedical Research Unit at the Malaghan Institute for their excellent animal husbandry, and Kelly Prendergast and Lindsay Ancelet for assistance with experiments.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3 (Surg Sect):1–48Google Scholar
  2. 2.
    Grange JM, Bottasso O, Stanford CA, Stanford JL (2008) The use of mycobacterial adjuvant-based agents for immunotherapy of cancer. Vaccine 26(39):4984–4990. doi: 10.1016/j.vaccine.2008.06.092 PubMedCrossRefGoogle Scholar
  3. 3.
    Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310. doi: 10.1155/2011/405310 PubMedCrossRefGoogle Scholar
  4. 4.
    Jo EK (2008) Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis 21(3):279–286. doi: 10.1097/QCO.0b013e3282f88b5d PubMedCrossRefGoogle Scholar
  5. 5.
    Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, Toyoshima K, Seya T (2000) Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 68(12):6883–6890PubMedCrossRefGoogle Scholar
  6. 6.
    Gnjatic S, Sawhney NB, Bhardwaj N (2010) Toll-like receptor agonists: are they good adjuvants? Cancer J 16(4):382–391. doi: 10.1097/PPO.0b013e3181eaca65 PubMedCrossRefGoogle Scholar
  7. 7.
    Morales A, Eidinger D, Bruce AW (1976) Intracavitary bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116(2):180–183PubMedGoogle Scholar
  8. 8.
    Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Bohle A, Palou-Redorta J, Roupret M (2011) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol 59(6):997–1008. doi: 10.1016/j.eururo.2011.03.017 PubMedCrossRefGoogle Scholar
  9. 9.
    Shelley MD, Mason MD, Kynaston H (2010) Intravesical therapy for superficial bladder cancer: a systematic review of randomised trials and meta-analyses. Cancer Treat Rev 36(3):195–205. doi: 10.1016/j.ctrv.2009.12.005 PubMedCrossRefGoogle Scholar
  10. 10.
    Bevers RF, Kurth KH, Schamhart DH (2004) Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br J Cancer 91(4):607–612. doi: 10.1038/sj.bjc.6602026 PubMedGoogle Scholar
  11. 11.
    Ayari C, LaRue H, Hovington H, Decobert M, Harel F, Bergeron A, Tetu B, Lacombe L, Fradet Y (2009) Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy. Eur Urol 55(6):1386–1395. doi: 10.1016/j.eururo.2009.01.040 PubMedCrossRefGoogle Scholar
  12. 12.
    Higuchi T, Shimizu M, Owaki A, Takahashi M, Shinya E, Nishimura T, Takahashi H (2009) A possible mechanism of intravesical BCG therapy for human bladder carcinoma: involvement of innate effector cells for the inhibition of tumor growth. Cancer Immunol Immunother 58(8):1245–1255. doi: 10.1007/s00262-008-0643-x PubMedCrossRefGoogle Scholar
  13. 13.
    Beatty JD, Islam S, North ME, Knight SC, Ogden CW (2004) Urine dendritic cells: a noninvasive probe for immune activity in bladder cancer? BJU Int 94(9):1377–1383. doi: 10.1111/j.1464-410X.2004.05176.x PubMedCrossRefGoogle Scholar
  14. 14.
    Young SL, Murphy M, Zhu XW, Harnden P, O’Donnell MA, James K, Patel PM, Selby PJ, Jackson AM (2004) Cytokine-modified Mycobacterium smegmatis as a novel anticancer immunotherapy. Int J Cancer 112(4):653–660. doi: 10.1002/ijc.20442 PubMedCrossRefGoogle Scholar
  15. 15.
    Rakshit S, Ponnusamy M, Papanna S, Saha B, Ahmed A, Nandi D (2011) Immunotherapeutic efficacy of Mycobacterium indicus pranii in eliciting anti-tumor T cell responses: critical roles of IFNgamma. Int J Cancer. doi: 10.1002/ijc.26099 PubMedGoogle Scholar
  16. 16.
    Stebbing J, Dalgleish A, Gifford-Moore A, Martin A, Gleeson C, Wilson G, Brunet LR, Grange J, Mudan S (2011) An intra-patient placebo-controlled phase I trial to evaluate the safety and tolerability of intradermal IMM-101 in melanoma. Ann Oncol. doi: 10.1093/annonc/mdr363 Google Scholar
  17. 17.
    Stanford JL, Stanford CA, O’Brien ME, Grange JM (2008) Successful immunotherapy with Mycobacterium vaccae in the treatment of adenocarcinoma of the lung. Eur J Cancer 44(2):224–227. doi: 10.1016/j.ejca.2007.08.021 PubMedCrossRefGoogle Scholar
  18. 18.
    Patel PM, Sim S, O’Donnell DO, Protheroe A, Beirne D, Stanley A, Tourani JM, Khayat D, Hancock B, Vasey P, Dalgleish A, Johnston C, Banks RE, Selby PJ (2008) An evaluation of a preparation of Mycobacterium vaccae (SRL172) as an immunotherapeutic agent in renal cancer. Eur J Cancer 44(2):216–223. doi: 10.1016/j.ejca.2007.11.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Yarkoni E, Rapp HJ (1980) Immunotherapy of experimental cancer by intralesional injection of emulsified nonliving mycobacteria: comparison of Mycobacterium bovis (BCG), Mycobacterium phlei, and Mycobacterium smegmatis. Infect Immun 28(3):887–892PubMedGoogle Scholar
  20. 20.
    Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785PubMedCrossRefGoogle Scholar
  21. 21.
    Rosas M, Thomas B, Stacey M, Gordon S, Taylor PR (2010) The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. J Leukoc Biol 88(1):169–180. doi: 10.1189/jlb.0809548 PubMedCrossRefGoogle Scholar
  22. 22.
    Leon B, Lopez-Bravo M, Ardavin C (2005) Monocyte-derived dendritic cells. Semin Immunol 17(4):313–318. doi: 10.1016/j.smim.2005.05.013 PubMedCrossRefGoogle Scholar
  23. 23.
    Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661. doi: 10.1126/science.1178331 PubMedCrossRefGoogle Scholar
  24. 24.
    Sylvester RJ, van der Meijden AP, Oosterlinck W, Hoeltl W, Bono AV (2003) The side effects of Bacillus Calmette-Guerin in the treatment of Ta T1 bladder cancer do not predict its efficacy: results from a European organisation for research and treatment of Cancer Genito-Urinary Group Phase III Trial. Eur Urol 44(4):423–428PubMedCrossRefGoogle Scholar
  25. 25.
    Pierre-Audigier C, Jouanguy E, Lamhamedi S, Altare F, Rauzier J, Vincent V, Canioni D, Emile JF, Fischer A, Blanche S, Gaillard JL, Casanova JL (1997) Fatal disseminated Mycobacterium smegmatis infection in a child with inherited interferon gamma receptor deficiency. Clin Infect Dis 24(5):982–984PubMedCrossRefGoogle Scholar
  26. 26.
    Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ (2002) TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168(9):4620–4627PubMedGoogle Scholar
  27. 27.
    Cheadle EJ, O’Donnell D, Selby PJ, Jackson AM (2005) Closely related mycobacterial strains demonstrate contrasting levels of efficacy as antitumor vaccines and are processed for major histocompatibility complex class I presentation by multiple routes in dendritic cells. Infect Immun 73(2):784–794. doi: 10.1128/IAI.73.2.784-794.2005 PubMedCrossRefGoogle Scholar
  28. 28.
    Leon B, Lopez-Bravo M, Ardavin C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26(4):519–531. doi: 10.1016/j.immuni.2007.01.017 PubMedCrossRefGoogle Scholar
  29. 29.
    Nakano H, Lin KL, Yanagita M, Charbonneau C, Cook DN, Kakiuchi T, Gunn MD (2009) Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat Immunol 10(4):394–402. doi: 10.1038/ni.1707 PubMedCrossRefGoogle Scholar
  30. 30.
    Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Ait-Yahia S, Vicari A, Kaiserlian D, Dubois B (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24(2):191–201. doi: 10.1016/j.immuni.2006.01.005 PubMedCrossRefGoogle Scholar
  31. 31.
    Segura E, Albiston AL, Wicks IP, Chai SY, Villadangos JA (2009) Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc Natl Acad Sci USA 106(48):20377–20381. doi: 10.1073/pnas.0910295106 PubMedCrossRefGoogle Scholar
  32. 32.
    Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH (2001) Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 194(9):1361–1373PubMedCrossRefGoogle Scholar
  33. 33.
    Reljic R, Di Sano C, Crawford C, Dieli F, Challacombe S, Ivanyi J (2005) Time course of mycobacterial infection of dendritic cells in the lungs of intranasally infected mice. Tuberculosis (Edinb) 85(1–2):81–88. doi: 10.1016/ CrossRefGoogle Scholar
  34. 34.
    Schreiber HA, Harding JS, Hunt O, Altamirano CJ, Hulseberg PD, Stewart D, Fabry Z, Sandor M (2011) Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice. J Clin Invest 121(10):3902–3913. doi: 10.1172/JCI45113 PubMedCrossRefGoogle Scholar
  35. 35.
    Stoitzner P, Green LK, Jung JY, Price KM, Atarea H, Kivell B, Ronchese F (2008) Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother 57(11):1665–1673. doi: 10.1007/s00262-008-0487-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Gerner MY, Casey KA, Mescher MF (2008) Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses. J Immunol 181(1):155–164. doi: 181/1/155 PubMedGoogle Scholar
  37. 37.
    Gerner MY, Mescher MF (2009) Antigen processing and MHC-II presentation by dermal and tumor-infiltrating dendritic cells. J Immunol 182(5):2726–2737. doi: 10.4049/jimmunol.0803479 PubMedCrossRefGoogle Scholar
  38. 38.
    Ataera H, Hyde E, Price KM, Stoitzner P, Ronchese F (2011) Murine melanoma-infiltrating dendritic cells are defective in antigen presenting function regardless of the presence of CD4CD25 regulatory T cells. PLoS One 6(3):e17515. doi: 10.1371/journal.pone.0017515 PubMedCrossRefGoogle Scholar
  39. 39.
    Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489. doi: 10.1038/nature10673 PubMedCrossRefGoogle Scholar
  40. 40.
    Helmich BK, Dutton RW (2001) The role of adoptively transferred CD8 T cells and host cells in the control of the growth of the EG7 thymoma: factors that determine the relative effectiveness and homing properties of Tc1 and Tc2 effectors. J Immunol 166(11):6500–6508PubMedGoogle Scholar
  41. 41.
    Hollenbaugh JA, Dutton RW (2006) IFN-gamma regulates donor CD8 T cell expansion, migration, and leads to apoptosis of cells of a solid tumor. J Immunol 177(5):3004–3011. doi: 177/5/3004 PubMedGoogle Scholar
  42. 42.
    Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 299(5609):1033–1036. doi: 10.1126/science.1078231 PubMedCrossRefGoogle Scholar
  43. 43.
    Zanin-Zhorov A, Ding Y, Kumari S, Attur M, Hippen KL, Brown M, Blazar BR, Abramson SB, Lafaille JJ, Dustin ML (2010) Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 328(5976):372–376. doi: 10.1126/science.1186068 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fenella J. Rich
    • 1
  • Sabine Kuhn
    • 1
  • Evelyn J. Hyde
    • 1
  • Jacquie L. Harper
    • 1
  • Franca Ronchese
    • 1
    Email author
  • Joanna R. Kirman
    • 1
    Email author
  1. 1.Malaghan Institute of Medical ResearchVictoria University of WellingtonKelburn, WellingtonNew Zealand

Personalised recommendations