Cancer Immunology, Immunotherapy

, Volume 61, Issue 11, pp 2193–2201

Molecular subtype is determinant on inflammatory status and immunological profile from invasive breast cancer patients

  • A. C. S. A. Herrera
  • C. Panis
  • V. J. Victorino
  • F. C. Campos
  • A. N. Colado-Simão
  • A. L. Cecchini
  • R. Cecchini
Original article


Breast cancer consists in a chronic inflammatory disease with multiple biological and clinical behaviors. Based on high throughput technologies data, this disease is currently classified according to the molecular expression of estrogen (ER), progesterone (PR) and human epidermal growth factor (HER-2) receptors. In this study, we defined the inflammatory profile of the main molecular subtypes of breast cancer patients: luminal (ER and PR positive, HER-2 negative), HER-2 enriched (HER-2 positive) and triple negative (ER, PR and HER-2 negative). Cytokines panel was assessed by measurement of TNF-α, TGF-β, IL-1, IL-10 and IL-12 plasmatic levels. Oxidative profile was assessed by determination of lipid peroxidation, total antioxidant capacity of plasma, malondialdehyde levels, carbonyl content and nitric oxide (NO). Clinical data were correlated with inflammatory findings. Our findings demonstrated that patients bearing the luminal subtype displayed high TNF-α, TGF-β and enhanced oxidative stress levels associated with reduced IL-12. HER-2-enriched group exhibited higher levels of TNF-α, IL-12 and TGF-β associated with enhanced oxidative stress. Triple-negative subtype exhibited the most aggressive profile of disease behavior, with reduction in both TNF-α and TGF-β, with high levels of lipid peroxidation and NO. The clinical importance of our findings lies in the fact that the inflammatory status varies in distinct ways due to molecular subtype of breast cancer, opening potential therapeutic targets to future therapies.


Breast cancer Molecular subtypes TNF-α TGF-β Oxidative stress 


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61:69–90CrossRefGoogle Scholar
  2. 2.
    Pourzand A, Fakhree BA, Hashemzadeh S, Halimi M, Daryani A (2011) Hormone receptor status in breast cancer and its relation to age and other prognostic factors. Breast Cancer Basic Clin Res 5:87–92Google Scholar
  3. 3.
    Su Y, Zheng Y, Zheng W, Gu K, Chen Z, Li G, Cai Q, Lu W, Shu XO (2011) Distinct distribution and prognostic significance of molecular subtypes of breast cancer in Chinese women: a population-based cohort study. BMC Cancer 11:292–303PubMedCrossRefGoogle Scholar
  4. 4.
    Levano KS, Jung EH, Kenny PA (2011) Breast cancer subtypes express distinct receptor repertoires for tumor-associated macrophage derived cytokines. Biochem Biophys Res Commun 411(1):107–110Google Scholar
  5. 5.
    Voduc KD, Cheang MCU, Tyldesley S, Gelman K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691PubMedCrossRefGoogle Scholar
  6. 6.
    Schnit SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol 23:S60–S64CrossRefGoogle Scholar
  7. 7.
    Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11PubMedCrossRefGoogle Scholar
  8. 8.
    Panis C, Victorino VJ, Herrera ACSA, Freitas LF, deRossi T, Campos FC, Colado Simão NA, Barbosa DS, Pinge-Filho P, Cecchini R, Cecchini AL (2011) Differential oxidative status and immune characterization of the early and advanced stages of human breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-011-1851-1 Google Scholar
  9. 9.
    Panis C, Herrera AC, Victorino VJ, Campos FC, Freitas LF, De Rossi T, Colado Simão AN, Cecchini AL, Cecchini R (2011) Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat. doi:10.1007/s10549-011-1693-x Google Scholar
  10. 10.
    Panis C, Lemos LGT, Victorino VJ, Herrera ACSA, Campos FC, Colado Simão NA, Pinge-Filho P, Cecchini AL, Cecchini R (2011) Immunological effects of Taxol and Adryamicin in breast cancer patients. Cancer Immunol Immunother. doi:10.1007/s00262-011-1117-0 PubMedGoogle Scholar
  11. 11.
    Kobiela J, Stefaniak T, Krajewski J, Kalinska-Blach B, Zurawa-Janicka D, Lachinski A, Gackowski D, Olinski R, Nowak J, Knap N, Lipinska B, Sledzinski Z, Wozniak M (2007) Dynamics of estrogen-induced oxidative stress. Acta Biochim Pol 54:289–295PubMedGoogle Scholar
  12. 12.
    Yau C, Benz CC (2008) Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group of estrogen receptor positive primary breast cancers. Breast Cancer Res 10:R61PubMedCrossRefGoogle Scholar
  13. 13.
    Tesarova P, Kalousova M, Trnková B, Soukupová J, Argalasová S, Mestek O, Petruzelka L, Zima T (2007) Carbonyl and oxidative stress in patients with breast cancer—is there a relation to stage of disease? Neoplasma 54:219–224PubMedGoogle Scholar
  14. 14.
    Repetto M, Reides C, Carretero MLG, Costa M, Griemberg G, Llesuy S (1996) Oxidative stress in blood of HIV infected patients. Clin Chim Acta 225:107–117CrossRefGoogle Scholar
  15. 15.
    Gonzales-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Radic Biol Med 10:93–100CrossRefGoogle Scholar
  16. 16.
    Panis C, Mazzuco TL, Costa CZF, Victorino VJ, Tatakihara VLH, Yamauchi LM, Yamada-Ogatta SF, Cecchini R, Pinge-Filho P (2011) Trypanosoma cruzi: effect of the absence of 5-lipoxygenase (5-LO)-derived leukotrienes on levels of cytokines, nitric oxide and iNOS expression in cardiac tissue in the acute phase of infection in mice. Exp Parasitol 127:58–65PubMedCrossRefGoogle Scholar
  17. 17.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363PubMedCrossRefGoogle Scholar
  18. 18.
    Miller GL (1959) Protein determination for large numbers of samples. Anal Chem 31:964CrossRefGoogle Scholar
  19. 19.
    Arvold ND, Taghian AG, Niemierko A, Abi Raad RF, Sreedhara M, Nguyen PL, Bellon JR, Wong JS, Smith BL, Harris JR (2011) Age, breast cancer subtype approximation, and local reccurrence after breas-conserving therapy. J Clin Oncol. doi:10.1200/JCO.2011.36.1105 Google Scholar
  20. 20.
    Theriault RL, Litton JK, Mittendorf EA, Chen H, Meric-Bernstam F, Chavez-Macgregor M, Morrow PK, Woodward WA, Sahin A, Horotbagyi GN, Gonzalez-Angulo AM (2011) Age and survival estimates in patients who have node-negative T1ab breast cancer by breast cancer subtype. Clin Breast. doi:10.1016/j.clbc.2011.05.002 Google Scholar
  21. 21.
    Vestjens JH, de Boer M, van Diest PJ, van Deurzen CH, van Dijck JA, Boro GF, Adang EM, Bult P, Tjan-Heijnen VC (2011) Prognostic impact of isolated tumor cells in breast cancer axillary nodes: single tumor cell(s) versus tumor cell cluster(s) and microanatomic location. Breast Cancer Res Treat. doi:10.1007/s10549-011-1771-0 Google Scholar
  22. 22.
    Hernández-Aya LF, Chavez-MacGregor M, Le X, Meric-Bernstam F, Buchholz TA, Hsu L, Sahin AA, Do KA, Valero V, Hortobagyi GN, Gonzalez-Angulo AM (2011) Nodal status and clinical outcomes in a large cohort of patients with triple negative breast cancer. J Clin Oncol 29:2628–2634PubMedCrossRefGoogle Scholar
  23. 23.
    Rahka EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Richardson AL, Schnitt SJ, Schnitt FC, Tan PH, Tse GM, Badve S, Ellis IO (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 12:207Google Scholar
  24. 24.
    Dong SW, Wang W, Sui J, Deng XY, Chen XD, Zhang ZW, Liu X, Zhang JH, Yang QS, Jia YF, Song X (2011) Expression patterns of ER, HER2 and NM23-H1 in breast cancer patients with different menopausal status: correlation with metastasis. Mol Diagn Ther 15:311–319CrossRefGoogle Scholar
  25. 25.
    Reyal F, Rouzier R, Depont-Hazelzet B, Bolet MA, Pierga JY, Alran S, Salmon RJ, Fourchotte V, Vincent-Salomon A, Sastre-Garau X, Antoine M, Uzan S, Sigal-Zafrani B, de Rycke Y (2011) The molecular subtype classification is determinant of sentinel node positivity in early breast carcinoma. PLoS ONE 6:e20297PubMedCrossRefGoogle Scholar
  26. 26.
    Tanizaki J, Okamoto I, Sakai K, Nakagawa K (2011) Differential roles of trans-phosphorylated EGRF, HER2, HER3, and RET as hetrodimerisation partners of MET in lung cancer with MET amplification. Br J Cancer 105:807–813PubMedCrossRefGoogle Scholar
  27. 27.
    Leek RD, Landers R, Fox SB, Ng F, Harris AL, Lewis CE (1998) Association of tumor necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer 77(12):2246–2251PubMedCrossRefGoogle Scholar
  28. 28.
    Xian LW, Li TP, Wei YE, Wu SP, Ma L (2011) Relation of advanced oxidation proteins products with VEGF and TGF-β1 in colon cancer cells exposed to intermittent hypoxia. Nan fang Ye Ke Da Xue Xue Bao 4:619–623Google Scholar
  29. 29.
    Okoh V, Deoraj A, Roy D (2011) Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta 1815:115–133PubMedGoogle Scholar
  30. 30.
    Bhatnagar S, Panguluri SK, Gupta SK, Dahiya S, Lundy RF, Kumar A (2010) Tumor necrosis factor alpha regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS ONE 5(10):e13262PubMedCrossRefGoogle Scholar
  31. 31.
    Lin S, Yang J, Elkahloun AG, Bandyopadhyay A, Wang L, Cornell JE, Yeh IT, Agyin J, Tomlinson G, Sun LZ (2012) Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Mol Cell Biol. doi:10.1091/mbc.E11-10-0849 Google Scholar
  32. 32.
    Wang SE (2011) The functional crosstalk between HER2 tyrosine kinase and TGF-β signaling in breast cancer malignancy. J Signal Transduct. doi:10.1155/2011/804236
  33. 33.
    Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weisntein S, Orel SG, Vondeheide R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, June C, Zhang PJ (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67(4):1842–1852PubMedCrossRefGoogle Scholar
  34. 34.
    Xu L, Yin S, Banerjee S, Sarkar F, Reddy KB (2011) Enhanced anticancer effect of the combination of cisplatin and TRAIL in triple negative breast tumor cells. Mol Cancer Ther 10(3):550–557PubMedCrossRefGoogle Scholar
  35. 35.
    Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS, Lipkowitz S (2009) TRAIL induces apoptosis in triple negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113(2):217–230PubMedCrossRefGoogle Scholar
  36. 36.
    Rahman M, Pumphrey JG, Lipkowitz S (2009) The TRAIL to targeted therapy of breast cancer. Adv Cancer Res 103:43–73PubMedCrossRefGoogle Scholar
  37. 37.
    Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst M, Mitchell JB (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19:711–721PubMedCrossRefGoogle Scholar
  38. 38.
    Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA, Martin DN, Switzer CH, Hidson RS, Wink DA, Lee DH, Stephens RM, Ambs S (2010) Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest 120:3843–3854PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. C. S. A. Herrera
    • 1
  • C. Panis
    • 1
  • V. J. Victorino
    • 1
  • F. C. Campos
    • 1
  • A. N. Colado-Simão
    • 1
  • A. L. Cecchini
    • 1
  • R. Cecchini
    • 1
  1. 1.Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, Center of Biological SciencesState University of LondrinaLondrinaBrazil

Personalised recommendations