Advertisement

Cancer Immunology, Immunotherapy

, Volume 61, Issue 11, pp 2033–2044 | Cite as

Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial

  • Hilko Ardon
  • Stefaan W. Van Gool
  • Tina Verschuere
  • Wim Maes
  • Steffen Fieuws
  • Raf Sciot
  • Guido Wilms
  • Philippe Demaerel
  • Jan Goffin
  • Frank Van Calenbergh
  • Johan Menten
  • Paul Clement
  • Maria Debiec-Rychter
  • Steven De VleeschouwerEmail author
Original article

Abstract

Purpose

Dendritic cell (DC)-based tumor vaccination has rendered promising results in relapsed high-grade glioma patients. In the HGG-2006 trial (EudraCT 2006-002881-20), feasibility, toxicity, and clinical efficacy of the full integration of DC-based tumor vaccination into standard postoperative radiochemotherapy are studied in 77 patients with newly diagnosed glioblastoma.

Patients and methods

Autologous DC are generated after leukapheresis, which is performed before the start of radiochemotherapy. Four weekly induction vaccines are administered after the 6-week course of concomitant radiochemotherapy. During maintenance chemotherapy, 4 boost vaccines are given. Feasibility and progression-free survival (PFS) at 6 months (6mo-PFS) are the primary end points. Overall survival (OS) and immune profiling, rather than monitoring, as assessed in patients’ blood samples, are the secondary end points. Analysis has been done on intent-to-treat basis.

Results

The treatment was feasible without major toxicity. The 6mo-PFS was 70.1 % from inclusion. Median OS was 18.3 months. Outcome improved significantly with lower EORTC RPA classification. Median OS was 39.7, 18.3, and 10.7 months for RPA classes III, IV, and V, respectively. Patients with a methylated MGMT promoter had significantly better PFS (p = 0.0027) and OS (p = 0.0082) as compared to patients with an unmethylated status. Exploratory “immunological profiles” were built to compare to clinical outcome, but no statistical significant evidence was found for these profiles to predict clinical outcome.

Conclusion

Full integration of autologous DC-based tumor vaccination into standard postoperative radiochemotherapy for newly diagnosed glioblastoma seems safe and possibly beneficial. These results were used to power the currently running phase IIb randomized clinical trial.

Keywords

Dendritic cell Vaccine Glioblastoma Radiochemoimmunotherapy 

Notes

Acknowledgments

We thank our laboratory collaborators for their excellent technical assistance, the department of hematology for the care provided at time of the leukapheresis, and the clinic for radiotherapy for irradiating the tumor lysate preparations. HSA has been provided by the Belgian Red Cross and Baxter. This project is supported by the Olivia Hendrickx Research Fund (http://www.olivia.be), the Herman Memorial Research Fund (http://www.hmrf.be), and the James E. Kearney Memorial Foundation (http://www.jekfoundation.org). Support was also obtained from CAF Belgium, Baxter, and gifts from private families and service clubs. Additionally, grants were obtained from “Stichting tegen Kanker”, IWT (TBM projects), the Stem Cell Institute Leuven, the Emmanuel van der Schueren Fund, the International Union against Cancer, the Klinisch Onderzoeksfonds UZ Leuven, and the Fund for Scientific Research—Flanders (FWO-V). SDV is supported by the “Klinisch onderzoeksfonds” from the University Hospital Leuven. SWVG is Senior Clinical Investigator of the Fund for Scientific Research—Flanders (Belgium) (F.W.O.-Vlaanderen).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

262_2012_1261_MOESM1_ESM.pdf (339 kb)
Supplementary material 1 (PDF 339 kb)

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoom MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer EA, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Eng J Med 352:987–996CrossRefGoogle Scholar
  2. 2.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  3. 3.
    Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G, Demaerel P, Bijttebier P, Claes L, Goffin J, Van Calenbergh F, De Vleeschouwer S (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99:261–272PubMedCrossRefGoogle Scholar
  4. 4.
    De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J, Sciot R, Wilms G, Demaerel P, Warmuth-Metz M, Soerensen N, Wolff JE, Wagner S, Kaempgen E, Van Gool SW (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104PubMedCrossRefGoogle Scholar
  5. 5.
    Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE, Lally-Goss D, McGehee-Norman S, Paolino A, Reardon DA, Friedman AH, Friedman HS, Bigner DD (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8:2773–2779PubMedCrossRefGoogle Scholar
  6. 6.
    Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S, Goldfinger D, Ng H, Irvin D, Yu JS (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964PubMedCrossRefGoogle Scholar
  7. 7.
    Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW (2010) Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer 54:519–525PubMedGoogle Scholar
  8. 8.
    De Vleeschouwer S, Van Calenbergh F, Demaerel P, Flamen P, Rutkowski S, Kaempgen E, Wolff JEA, Plets C, Sciot R, Van Gool SW (2004) Transient local response and persistent tumor control of recurrent malignant glioma treated with combination therapy including dendritic cell therapy. J Neurosurg (pediatrics) 100:492–497CrossRefGoogle Scholar
  9. 9.
    Grauer OM, Wesseling P, Adema GJ (2009) Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 19:674–693PubMedCrossRefGoogle Scholar
  10. 10.
    Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525PubMedCrossRefGoogle Scholar
  11. 11.
    Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JEA, Kuhl J, Demaerel P, Warmuth-Metz M, Flamen P, Van Calenbergh F, Plets C, Sorensen N, Opitz A, Van Gool SW (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662PubMedGoogle Scholar
  12. 12.
    Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S, De Vleeschouwer S (2009) Dendritic cell therapy of high-grade gliomas. Brain Pathol 19:694–712PubMedCrossRefGoogle Scholar
  13. 13.
    Walker DG, Laherty R, Tomlinson FH, Chuah T, Schmidt C (2008) Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J Clin Neurosci 15:114–121PubMedCrossRefGoogle Scholar
  14. 14.
    North RJ (1984) Gamma-irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells. Cancer Immunol Immunother 16:175–181PubMedCrossRefGoogle Scholar
  15. 15.
    Emens LA (2010) Chemoimmunotherapy. Cancer J 16:295–303PubMedCrossRefGoogle Scholar
  16. 16.
    Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2:547–556PubMedGoogle Scholar
  17. 17.
    Porter DL, June CH (2005) T-cell reconstitution and expansion after hematopoietic stem cell transplantation: ‘T’ it up! Bone Marrow Transplant 35:935–942PubMedCrossRefGoogle Scholar
  18. 18.
    Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634PubMedCrossRefGoogle Scholar
  19. 19.
    Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB (2008) Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57:123–131PubMedCrossRefGoogle Scholar
  20. 20.
    Park SD, Kim CH, Kim CK, Park JA, Sohn HJ, Hong YK, Kim TG (2007) Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine 25:3485–3491PubMedCrossRefGoogle Scholar
  21. 21.
    Kim TG, Kim CH, Park JS, Park SD, Kim CK, Chung DS, Hong YK (2010) Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol 17:143–153PubMedCrossRefGoogle Scholar
  22. 22.
    Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 1805:53–71PubMedGoogle Scholar
  23. 23.
    Wheeler CJ, Das A, Liu G, Yu JS, Black KL (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10:5316–5326PubMedCrossRefGoogle Scholar
  24. 24.
    Liu G, Akasaki Y, Khong HT, Wheeler CJ, Das A, Black KL, Yu JS (2005) Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene 24:5226–5234PubMedCrossRefGoogle Scholar
  25. 25.
    Mirimanoff RO, Gorlia T, Mason W, van den Bent MJ, Kortmann RD, Fisher B, Reni M, Brandes AA, Curschmann J, Villa S, Cairncross G, Allgeier A, Lacombe D, Stupp R (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24:2563–2569PubMedCrossRefGoogle Scholar
  26. 26.
    Ardon H, Verbinnen B, Maes W, Beez T, Van Gool S, De Vleeschouwer S (2010) Technical advancement in regulatory T cell isolation and characterization using CD127 expression in patients with malignant glioma treated with autologous dendritic cell vaccination. J Immunol Methods 352:169–173PubMedCrossRefGoogle Scholar
  27. 27.
    Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51PubMedCrossRefGoogle Scholar
  28. 28.
    Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG, Eisenhauer E, Belanger K, Brandes AA, Allgeier A, Lacombe D, Stupp R (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9:29–38PubMedCrossRefGoogle Scholar
  29. 29.
    Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A, Pichlmeier U (2010) Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. J Neurosurg 114:613–623PubMedGoogle Scholar
  30. 30.
    Muller AJ, Prendergast GC (2005) Marrying immunotherapy with chemotherapy: why say IDO? Cancer Res 65:8065–8068PubMedCrossRefGoogle Scholar
  31. 31.
    Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63:4490–4496PubMedGoogle Scholar
  32. 32.
    Masucci GV, Mansson-Brahme E, Ragnarsson-Olding B, Nilsson B, Wagenius G, Hansson J (2006) Alternating chemo-immunotherapy with temozolomide and low-dose interleukin-2 in patients with metastatic melanoma. Melanoma Res 16:357–363PubMedCrossRefGoogle Scholar
  33. 33.
    Grossman SA, Ye X, Chamberlain M, Mikkelsen T, Batchelor T, Desideri S, Piantadosi S, Fisher J, Fine HA (2009) Talampanel with standard radiation and temozolomide in patients with newly diagnosed glioblastoma: a multicenter phase II trial. J Clin Oncol 27:4155–4161PubMedCrossRefGoogle Scholar
  34. 34.
    Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, Fisher J (2010) Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 16:2443–2449PubMedCrossRefGoogle Scholar
  35. 35.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  36. 36.
    Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La CC, Sulman EP, Bekele BN, Aldape KD (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116–121PubMedCrossRefGoogle Scholar
  37. 37.
    Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199PubMedCrossRefGoogle Scholar
  38. 38.
    Clavreul A, Piard N, Tanguy JY, Gamelin E, Rousselet MC, Leynia P, Menei P (2010) Autologous tumor cell vaccination plus infusion of GM-CSF by a programmable pump in the treatment of recurrent malignant gliomas. J Clin Neurosci 17:842–848PubMedCrossRefGoogle Scholar
  39. 39.
    Sloan AE, Dansey R, Zamorano L, Barger G, Hamm C, Diaz F, Baynes R, Wood G (2000) Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus 9:e9PubMedCrossRefGoogle Scholar
  40. 40.
    Wallenfriedman MA, Conrad JA, DelaBarre L, Graupman PC, Lee G, Garwood M, Gregerson DS, Jean WC, Hall WA, Low WC (1999) Effects of continuous localized infusion of granulocyte-macrophage colony-stimulating factor and inoculations of irradiated glioma cells on tumor progression. J Neurosurg 90:1064–1071PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hilko Ardon
    • 1
  • Stefaan W. Van Gool
    • 2
    • 8
  • Tina Verschuere
    • 2
  • Wim Maes
    • 2
  • Steffen Fieuws
    • 3
  • Raf Sciot
    • 4
  • Guido Wilms
    • 5
  • Philippe Demaerel
    • 5
  • Jan Goffin
    • 1
  • Frank Van Calenbergh
    • 1
  • Johan Menten
    • 6
  • Paul Clement
    • 7
  • Maria Debiec-Rychter
    • 9
  • Steven De Vleeschouwer
    • 1
    • 10
    • 10
    Email author
  1. 1.Department of NeurosurgeryCatholic University of LeuvenLeuvenBelgium
  2. 2.Department of Experimental MedicineCatholic University of LeuvenLeuvenBelgium
  3. 3.Department of Biostatistics and Statistical BioinformaticsCatholic University of LeuvenLeuvenBelgium
  4. 4.Department of PathologyCatholic University of LeuvenLeuvenBelgium
  5. 5.Department of ImagingCatholic University of LeuvenLeuvenBelgium
  6. 6.Department of RadiotherapyCatholic University of LeuvenLeuvenBelgium
  7. 7.Department of OncologyCatholic University of LeuvenLeuvenBelgium
  8. 8.Department of Child and WomenCatholic University of LeuvenLeuvenBelgium
  9. 9.Department of Human GeneticsCatholic University of LeuvenLeuvenBelgium
  10. 10.Department of NeurosurgeryUniversity Hospital LeuvenLeuvenBelgium

Personalised recommendations