Cancer Immunology, Immunotherapy

, Volume 61, Issue 10, pp 1791–1804 | Cite as

Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial

  • Eva Ellebaek
  • Lotte Engell-Noerregaard
  • Trine Zeeberg Iversen
  • Thomas Moerch Froesig
  • Shamaila Munir
  • Sine Reker Hadrup
  • Mads Hald Andersen
  • Inge Marie Svane
Original article

Abstract

Dendritic cells (DC) are the most potent antigen presenting cells and have proven effective in stimulation of specific immune responses in vivo. Competing immune inhibition could limit the clinical efficacy of DC vaccination. In this phase II trial, metronomic Cyclophosphamide and a Cox-2 inhibitor have been added to a DC vaccine with the intend to dampen immunosuppressive mechanisms. Twenty-eight patients with progressive metastatic melanoma were treated with autologous DCs pulsed with survivin, hTERT, and p53-derived peptides (HLA-A2+) or tumor lysate (HLA-A2). Concomitantly the patients were treated with IL-2, Cyclophosphamide, and Celecoxib. The treatment was safe and tolerable. Sixteen patients (57 %) achieved stable disease (SD) at 1st evaluation and 8 patients had prolonged SD (7–13.7 months). The median OS was 9.4 months. Patients with SD had an OS of 10.5 months while patients with progressive disease (PD) had an OS of 6.0 months (p = 0.048) even though there were no differences in prognostic factors between the two groups. Despite the use of metronomic Cyclophosphamide, regulatory T cells did not decrease during treatment. Indirect IFN-γ ELISPOT assays showed a general increase in immune responses from baseline to the time of 4th vaccination. Induction of antigen-specific immune responses was seen in 9 out of 15 screened HLA-A2+ patients. In conclusion, the number of patients obtaining SD more than doubled and 6-month survival significantly increased compared to a previous trial without Cyclophosphamide and Celecoxib. A general increase in immune responses against the tested peptides was observed.

Keywords

Malignant melanoma Dendritic cell vaccination Immunotherapy Metronomic cyclophosphamide 

Supplementary material

262_2012_1242_MOESM1_ESM.pdf (168 kb)
Supplementary material 1 (PDF 168 kb)

References

  1. 1.
    Lee ML, Tomsu K, Von Eschen KB (2000) Duration of survival for disseminated malignant melanoma: results of a meta-analysis. Melanoma Res 10:81–92PubMedGoogle Scholar
  2. 2.
    Agarwala SS (2009) Current systemic therapy for metastatic melanoma. Expert Rev Anticancer Ther 9:587–595PubMedCrossRefGoogle Scholar
  3. 3.
    Quirt I, Verma S, Petrella T, Bak K, Charette M (2007) Temozolomide for the treatment of metastatic melanoma: a systematic review. Oncologist 12:1114–1123PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson CM, Buzaid AC, Legha SS (1995) Systemic treatments for advanced cutaneous melanoma. Oncology (Williston Park) 9:1149–1158Google Scholar
  5. 5.
    Dutcher J (2002) Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park) 16:4–10Google Scholar
  6. 6.
    Gajewski TF (2010) Improved melanoma survival at last! Ipilimumab and a paradigm shift for immunotherapy. Pigment Cell Melanoma Res 23:580–581PubMedCrossRefGoogle Scholar
  7. 7.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRefGoogle Scholar
  8. 8.
    Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117:1195–1203PubMedCrossRefGoogle Scholar
  9. 9.
    Osada T, Clay TM, Woo CY, Morse MA, Lyerly HK (2006) Dendritic cell-based immunotherapy. Int Rev Immunol 25:377–413PubMedCrossRefGoogle Scholar
  10. 10.
    Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307PubMedCrossRefGoogle Scholar
  11. 11.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174PubMedCrossRefGoogle Scholar
  12. 12.
    Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–2414PubMedCrossRefGoogle Scholar
  13. 13.
    Berntsen A, Trepiakas R, Wenandy L, Geertsen PF, Thor SP, Andersen MH et al (2008) Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother 31:771–780PubMedCrossRefGoogle Scholar
  14. 14.
    Trepiakas R, Berntsen A, Hadrup SR, Bjorn J, Geertsen PF, Straten PT et al (2010) Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy 12:721–734PubMedCrossRefGoogle Scholar
  15. 15.
    Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20:241–246PubMedCrossRefGoogle Scholar
  16. 16.
    Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg NM et al (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16:5067–5078PubMedCrossRefGoogle Scholar
  17. 17.
    Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767PubMedGoogle Scholar
  18. 18.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648PubMedCrossRefGoogle Scholar
  19. 19.
    Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ et al (2007) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56:1597–1604PubMedCrossRefGoogle Scholar
  20. 20.
    Lutsiak ME, Semnani RT, De PR, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868PubMedCrossRefGoogle Scholar
  21. 21.
    Denkert C, Kobel M, Berger S, Siegert A, Leclere A, Trefzer U et al (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–308PubMedGoogle Scholar
  22. 22.
    Goulet AC, Einsphar JG, Alberts DS, Beas A, Burk C, Bhattacharyya A et al (2003) Analysis of cyclooxygenase 2 (COX-2) expression during malignant melanoma progression. Cancer Biol Ther 2:713–718PubMedGoogle Scholar
  23. 23.
    Becker MR, Siegelin MD, Rompel R, Enk AH, Gaiser T (2009) COX-2 expression in malignant melanoma: a novel prognostic marker? Melanoma Res 19:8–16PubMedCrossRefGoogle Scholar
  24. 24.
    Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67:8865–8873PubMedCrossRefGoogle Scholar
  25. 25.
    Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3+ CD4+ CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254PubMedGoogle Scholar
  26. 26.
    Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220PubMedCrossRefGoogle Scholar
  27. 27.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRefGoogle Scholar
  28. 28.
    Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R, Nieuwkoop NJ et al (2006) Design and use of conditional MHC class I ligands. Nat Med 12:246–251PubMedCrossRefGoogle Scholar
  29. 29.
    Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van VJ, Hombrink P et al (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526PubMedCrossRefGoogle Scholar
  30. 30.
    Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869–872PubMedGoogle Scholar
  31. 31.
    McCutcheon M, Wehner N, Wensky A, Kushner M, Doan S, Hsiao L et al (1997) A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J Immunol Methods 210:149–166PubMedCrossRefGoogle Scholar
  32. 32.
    Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345PubMedCrossRefGoogle Scholar
  33. 33.
    Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480PubMedCrossRefGoogle Scholar
  34. 34.
    Manola J, Atkins M, Ibrahim J, Kirkwood J (2000) Prognostic factors in metastatic melanoma: a pooled analysis of Eastern cooperative oncology group trials. J Clin Oncol 18:3782–3793PubMedGoogle Scholar
  35. 35.
    Andersen RS, Thrue CA, Junker N, Lyngaa R, Donia M, Ellebaek E et al (2012) Dissection of T cell antigen specificity in human melanoma. Cancer Res. doi:10.1158/0008-5472.CAN-11-2614
  36. 36.
    Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E et al (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641PubMedCrossRefGoogle Scholar
  37. 37.
    Schrama D, Pedersen LO, Keikavoussi P, Andersen MH, Straten Pt, Brocker EB et al (2002) Aggregation of antigen-specific T cells at the inoculation site of mature dendritic cells. J Invest Dermatol 119:1443–1448PubMedCrossRefGoogle Scholar
  38. 38.
    Lopez MN, Pereda C, Segal G, Munoz L, Aguilera R, Gonzalez FE et al (2009) Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol 27:945–952PubMedCrossRefGoogle Scholar
  39. 39.
    Ridolfi L, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E et al (2010) Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis. Clin Dev Immunol 2010:504979PubMedCrossRefGoogle Scholar
  40. 40.
    Ridolfi L, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E et al (2011) Dendritic cell-based vaccine in advanced melanoma: update of clinical outcome. Melanoma Res 21:524–529PubMedCrossRefGoogle Scholar
  41. 41.
    Engell-Noerregaard L, Hansen TH, Andersen MH, Thor SP, Svane IM (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58:1–14PubMedCrossRefGoogle Scholar
  42. 42.
    Hersey P, Halliday G, Farrelly M, DeSilva C, Lett M, Menzies S (2008) Phase I/II study of treatment with matured dendritic cells with or without low dose IL-2 in patients with disseminated melanoma. Cancer Immunol Immunother 57:1039–1051PubMedCrossRefGoogle Scholar
  43. 43.
    Andersen MH, Gehl J, Reker S, Pedersen LO, Becker JC, Geertsen P et al (2003) Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Semin Cancer Biol 13:449–459PubMedCrossRefGoogle Scholar
  44. 44.
    Iniguez MA, Punzon C, Fresno M (1999) Induction of cyclooxygenase-2 on activated T lymphocytes: regulation of T cell activation by cyclooxygenase-2 inhibitors. J Immunol 163:111–119PubMedGoogle Scholar
  45. 45.
    Paccani SR, Boncristiano M, Ulivieri C, D’Elios MM, Del PG, Baldari CT (2002) Nonsteroidal anti-inflammatory drugs suppress T-cell activation by inhibiting p38 MAPK induction. J Biol Chem 277:1509–1513PubMedCrossRefGoogle Scholar
  46. 46.
    Pettersen FO, Torheim EA, Dahm AE, Aaberge IS, Lind A, Holm M et al (2011) An exploratory trial of cyclooxygenase type 2 inhibitor in HIV-1 infection: downregulated immune activation and improved T cell-dependent vaccine responses. J Virol 85:6557–6566PubMedCrossRefGoogle Scholar
  47. 47.
    Kleinewietfeld M, Starke M, Di MD, Borsellino G, Battistini L, Rotzschke O et al (2009) CD49d provides access to “untouched” human Foxp3 + Treg free of contaminating effector cells. Blood 113:827–836PubMedCrossRefGoogle Scholar
  48. 48.
    Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265PubMedCrossRefGoogle Scholar
  49. 49.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedCrossRefGoogle Scholar
  50. 50.
    Emens LA (2010) Chemoimmunotherapy. Cancer J 16:295–303PubMedCrossRefGoogle Scholar
  51. 51.
    Finkelstein SE, Carey T, Fricke I, Yu D, Goetz D, Gratz M et al (2010) Changes in dendritic cell phenotype after a new high-dose weekly schedule of interleukin-2 therapy for kidney cancer and melanoma. J Immunother 33:817–827PubMedCrossRefGoogle Scholar
  52. 52.
    Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307PubMedCrossRefGoogle Scholar
  53. 53.
    de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMedGoogle Scholar
  54. 54.
    Wadler S, Einzig AI, Dutcher JP, Ciobanu N, Landau L, Wiernik PH (1988) Phase II trial of recombinant alpha-2b-interferon and low-dose cyclophosphamide in advanced melanoma and renal cell carcinoma. Am J Clin Oncol 11:55–59PubMedCrossRefGoogle Scholar
  55. 55.
    Lindemann A, Hoffken K, Schmidt RE, Diehl V, Kloke O, Gamm H et al (1989) A phase-II study of low-dose cyclophosphamide and recombinant human interleukin-2 in metastatic renal cell carcinoma and malignant melanoma. Cancer Immunol Immunother 28:275–281PubMedCrossRefGoogle Scholar
  56. 56.
    Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40:1825–1836PubMedCrossRefGoogle Scholar
  57. 57.
    Jilaveanu LB, Aziz SA, Kluger HM (2009) Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol 27:614–625PubMedCrossRefGoogle Scholar
  58. 58.
    Powell DJ Jr, de Vries CR, Allen T, Ahmadzadeh M, Rosenberg SA (2007) Inability to mediate prolonged reduction of regulatory T Cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30:438–447PubMedCrossRefGoogle Scholar
  59. 59.
    Gasparini G (2001) Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2:733–740PubMedCrossRefGoogle Scholar
  60. 60.
    Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y et al (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061PubMedCrossRefGoogle Scholar
  61. 61.
    Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O’Reilly MS et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Eva Ellebaek
    • 1
    • 2
  • Lotte Engell-Noerregaard
    • 1
    • 2
  • Trine Zeeberg Iversen
    • 1
    • 2
  • Thomas Moerch Froesig
    • 1
    • 3
  • Shamaila Munir
    • 1
  • Sine Reker Hadrup
    • 1
  • Mads Hald Andersen
    • 1
  • Inge Marie Svane
    • 1
    • 2
  1. 1.Department of Haematology, Center for Cancer Immune Therapy (CCIT)Copenhagen University Hospital, HerlevHerlevDenmark
  2. 2.Department of OncologyCopenhagen University Hospital, HerlevHerlevDenmark
  3. 3.Department of Pharmacology and Pharmacotherapy, Pharmaceutical FacultyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations