Advertisement

Cancer Immunology, Immunotherapy

, Volume 61, Issue 10, pp 1617–1626 | Cite as

In vivo imaging of immunotoxin treatment using Katushka-transfected A-431 cells in a murine xenograft tumour model

  • Alessa Pardo
  • Michael Stöcker
  • Florian Kampmeier
  • Georg Melmer
  • Rainer Fischer
  • Theo ThepenEmail author
  • Stefan Barth
Original article

Abstract

Purpose

Preclinical in vivo analyses of treatment responses are an important prerequisite to evaluate new therapeutics. Molecular in vivo imaging in the far red (FR)/near infra red (NIR) is a promising method, as it enables measurements at different time points in individual animals, thereby reducing the number of animals required, while increasing statistical significance. Here, we show the establishment of a method to monitor response to treatment using fluorescent cells, expressing the epidermal growth factor receptor (EGFR), a target already used in therapy.

Methods

We transfected A-431 tumour cells with the far red–emitting protein Katushka (Kat2), resulting in strong fluorescence allowing for the monitoring of tumour growth when implanted in BALB/c nu/nu mice with a CRi Maestro in vivo imager. We targeted A-431 cells with a previously reported immunotoxin (IT), consisting of the anti-EGFR antibody single-chain variable fragment (scFv) 425, fused to Pseudomonas aeruginosa Exotoxin A’ (ETA’). In addition, EGFR expression was verified using the 425(scFv) conjugated to a NIR dye BG-747 through a SNAP-tag linker.

Results

The results show the feasibility to evaluate response to treatment in vivo by FR imaging, while at the same location detecting EGFR expression. Treatment with 425(scFv)-ETA’ resulted in decelerated tumour growth, while not affecting the overall health of the animals. This is in contrast to treatment with Doxorubicin, which, although decreasing the tumour size, resulted in poor health.

Conclusions

We developed a novel method to non-invasively determine treatment responses by in vivo imaging of multiple parameters which showed the efficacy of 425(scFv)-ETA’.

Keywords

Fluorescence imaging scFv immunotoxin Katushka EGF receptor Immunotherapy Treatment response 

Notes

Acknowledgments

We thank Dirk Scheffler, Reinhard Rosinke and Peggy Jirak for excellent technical assistance. This publication is based upon work that was in part financed by the Bundesministerium für Bildung und Forschung (0315254A/B). The responsibility for the content of this publication lies with the author.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

262_2012_1219_MOESM1_ESM.pdf (6.5 mb)
Supplementary material 1 (PDF 6643 kb)

References

  1. 1.
    Contag PR (2002) Whole-animal cellular and molecular imaging to accelerate drug development. Drug Discov Today 7:555–562PubMedCrossRefGoogle Scholar
  2. 2.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRefGoogle Scholar
  3. 3.
    Alford R, Ogawa M, Choyke PL, Kobayashi H (2009) Molecular probes for the in vivo imaging of cancer. Mol Biosyst 5:1279–1291PubMedCrossRefGoogle Scholar
  4. 4.
    Gong H, Kovar J, Little G, Chen H, Olive DM (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia 12:139–149PubMedGoogle Scholar
  5. 5.
    Weissleder R (2001) A clearer vision for in vivo imaging. Progress continues in the development of smaller, more penetrable probes for biological imaging. Nat Biotechnol 19:316–317PubMedCrossRefGoogle Scholar
  6. 6.
    Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746PubMedCrossRefGoogle Scholar
  7. 7.
    Haigler H, Ash JF, Singer SJ, Cohen S (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci USA 75:3317–3321PubMedCrossRefGoogle Scholar
  8. 8.
    Tolmachev V, Rosik D, Wållberg H, Sjöberg A, Sandström M, Hansson M et al (2010) Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-Z EGFR:2377 Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imag 37:613–622CrossRefGoogle Scholar
  9. 9.
    Abdollahi A, Griggs DW, Zieher H, Roth A, Lipson KE, Saffrich R et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11:6270–6279PubMedCrossRefGoogle Scholar
  10. 10.
    Shao W, Zhao S, Liu Z, Zhang J, Ma S, Sato JD et al (2006) Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C. Biochem Biophys Res Commun 349:816–824PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R (2003) FDA drug approval summary: Gefitinib (ZD1839)(Iressa (R)) tablets. Oncologist 8:303–306PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R (2005) FDA drug approval summary: erlotinib (Tarceva (R)) tablets. Oncologist 10:461–466PubMedCrossRefGoogle Scholar
  13. 13.
    Vincenzi B, Zoccoli A, Pantano F, Venditti O, Galluzzo S (2010) Cetuximab: from bench to bedside. Curr Cancer Drug Targets 10:80–95PubMedCrossRefGoogle Scholar
  14. 14.
    Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R (2007) FDA drug approval summary: panitumumab (Vectibix). Oncologist 12:577–583PubMedCrossRefGoogle Scholar
  15. 15.
    Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM (2005) Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 11:397–405PubMedGoogle Scholar
  16. 16.
    Bruell D, Stöcker M, Huhn M, Redding N, Küpper M, Schumacher P et al (2003) The recombinant anti-EGF receptor immunotoxin 425(scFv)-ETA’ suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol 23:1179–1186PubMedGoogle Scholar
  17. 17.
    Bruell D, Bruns CJ, Yezhelyev M, Huhn M, Müller J, Ischenko I et al (2005) Recombinant anti-EGFR immunotoxin 425 (scFv)-ETA’ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med 15:305–313PubMedGoogle Scholar
  18. 18.
    Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinköthe T et al (2000) Ki-4(scFv)-ETA’, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood 95:3909–3914PubMedGoogle Scholar
  19. 19.
    Huhn M, Sasse S, Tur MK, Matthey B, Schinköthe T, Rybak SM, et al. (2001) Human angiogenin fused to human CD30 Ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res 61:8737–8742Google Scholar
  20. 20.
    Tur M, Huhn M, Thepen T, Stöcker M, Krohn R, Vogel S et al (2003) Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res 63:8414–8419PubMedGoogle Scholar
  21. 21.
    Stahnke B, Thepen T, Stöcker M, Rosinke R, Jost E, Fischer R et al (2008) Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 7:2924–2932PubMedCrossRefGoogle Scholar
  22. 22.
    Tur MK, Neef I, Jost E, Galm O, Jäger G, Stöcker M et al (2009) Targeted restoration of down-regulated DAPK2 tumor suppressor activity induces apoptosis in Hodgkin lymphoma cells. J Immunother 32:431–441PubMedCrossRefGoogle Scholar
  23. 23.
    Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565PubMedCrossRefGoogle Scholar
  24. 24.
    Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237PubMedCrossRefGoogle Scholar
  25. 25.
    Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, Fitzgerald DJ et al (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345:241–247PubMedCrossRefGoogle Scholar
  26. 26.
    Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM et al (2010) Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res 16:1894–1903PubMedCrossRefGoogle Scholar
  27. 27.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  28. 28.
    Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837PubMedCrossRefGoogle Scholar
  29. 29.
    Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL (2009) Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28:3801–3813PubMedCrossRefGoogle Scholar
  30. 30.
    Arteaga CL (2003) EGF receptor as a therapeutic target: patient selection and mechanisms of resistance to receptor-targeted drugs. J Clin Oncol 21:289s–291sPubMedCrossRefGoogle Scholar
  31. 31.
    Kampmeier F, Ribbert M, Nachreiner T, Dembski S, Beaufils F, Brecht A et al (2009) Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjug Chem 20:1010–1015PubMedCrossRefGoogle Scholar
  32. 32.
    Kampmeier F, Niesen J, Koers A, Ribbert M, Brecht A, Fischer R et al (2010) Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imag 37:1926–1934CrossRefGoogle Scholar
  33. 33.
    Matthey B, Engert A, Klimka A, Diehl V, Barth S (1999) A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene 229:145–153PubMedCrossRefGoogle Scholar
  34. 34.
    Ribbert T, Thepen T, Tur MK, Fischer R, Huhn M, Barth S (2010) Improved efficacy by increased valency, both in vitro, as well as in vivo in a chronic cutaneous inflammation model in hCD64 transgenic mice. Br J Dermatol 162:1–3CrossRefGoogle Scholar
  35. 35.
    Kapp U, Wolf J, Von Kalle C, Tawadros S, Röttgen A, Engert A et al (1992) Preliminary report: growth of Hodgkin’s lymphoma derived cells in immune compromised mice. Ann Oncol 3:S21–S23Google Scholar
  36. 36.
    Stocker M, Tur MK, Sasse S, Krüßmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 28:211–219PubMedCrossRefGoogle Scholar
  37. 37.
    Johansen PB (1981) Doxorubicin pharmacokinetics after intravenous and intraperitoneal administration in the nude mouse. Cancer Chemother Pharmacol 5:267–270PubMedCrossRefGoogle Scholar
  38. 38.
    Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S (2005) Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci 76:1439–1453PubMedCrossRefGoogle Scholar
  39. 39.
    Ajaj KA, Graeser R, Fichtner I, Kratz F (2009) In vitro and in vivo study of an albumin-binding prodrug of doxorubicin that is cleaved by cathepsin B. Cancer Chemother Pharmacol 64:413–418PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen MM, Jørgensen JT, Binderup T, Kjaer A (2008) Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imag 8:16CrossRefGoogle Scholar
  41. 41.
    He X, Nie H, Wang K, Tan W, Wu X, Zhang P (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80:9597–9603PubMedCrossRefGoogle Scholar
  42. 42.
    Kobayashi H, Longmire MR, Ogawa M, Choyke PL (2011) Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 40:4626–4648PubMedCrossRefGoogle Scholar
  43. 43.
    Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS et al (2007) In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 13:6639–6648PubMedCrossRefGoogle Scholar
  44. 44.
    Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M et al (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 15:104–109PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alessa Pardo
    • 1
  • Michael Stöcker
    • 1
  • Florian Kampmeier
    • 1
  • Georg Melmer
    • 2
  • Rainer Fischer
    • 3
  • Theo Thepen
    • 3
    Email author
  • Stefan Barth
    • 1
    • 3
  1. 1.Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical EngineeringHelmholtz Institute of RWTH Aachen University & HospitalAachenGermany
  2. 2.PharmedArtis GmbHAachenGermany
  3. 3.Department of Pharmaceutical Product DevelopmentFraunhofer IMEAachenGermany

Personalised recommendations