Cancer Immunology, Immunotherapy

, Volume 61, Issue 8, pp 1269–1277 | Cite as

CAR T cells transform to trucks: chimeric antigen receptor–redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer

  • Markus Chmielewski
  • Hinrich AbkenEmail author
Focussed Research Review


Adoptive T cell therapy recently achieved impressive efficacy in early-phase clinical trials; this significantly raises the profile of immunotherapy in the fight against cancer. A broad variety of tumour cells can specifically be targeted by patients’ T cells, which are redirected in an antibody-defined, major histocompatibility complex–unrestricted fashion by endowing them with a chimeric antigen receptor (CAR). Despite promising results for some haematologic malignancies, the stroma of large, established tumours, the broad plethora of infiltrating repressor cells, and cancer cell variants that had lost the target antigen limit their therapeutic efficacy in the long term. This article reviews a newly described strategy for overcoming some of these shortcomings by engineering CAR T cells with inducible or constitutive release of IL-12. Once redirected, these T cells are activated, and released IL-12 accumulates in the tumour lesion where it promotes tumour destruction by at least two mechanisms: (1) induction of an innate immune cell response towards those cancer cells which are invisible to redirected T cells and (2) triggering programmatic changes in immune-suppressive cells. Given the enormous complexity of both tumour progression and immune attack, the upcoming strategies using CAR-redirected T cells for local delivery of immune-modulating payloads exhibited remarkable efficacy in pre-clinical models, suggesting their evaluation in clinical trials.


Adoptive cell therapy T cell Chimeric antigen receptor IL-12 Innate immunity PIVAC 11 



Work in the author’s laboratory was supported by the Deutsche Forschungsgemeinschaft, Bonn, the Deutsche Krebshilfe, Bonn, and the Wilhelm Sander-Stiftung, München.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE (2010) Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther 10:77–90PubMedCrossRefGoogle Scholar
  2. 2.
    Hombach AA, Abken H (2011) Costimulation by chimeric antigen receptors revisited the T cell antitumour response benefits from combined CD28-OX40 signalling. Int J Cancer 129:2935–2944PubMedCrossRefGoogle Scholar
  3. 3.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumour effects and can establish memory in patients with advanced Leukemia. Sci Transl Med 3:95ra73PubMedCrossRefGoogle Scholar
  4. 4.
    Croci DO, Zacarías Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG (2007) Dynamic cross-talk between tumour and immune cells in orchestrating the immunosuppressive network at the tumour microenvironment. Cancer Immunol Immunother 56:1687–1700PubMedCrossRefGoogle Scholar
  5. 5.
    Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727PubMedCrossRefGoogle Scholar
  6. 6.
    Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z, Palmer DC, Reger RN, Borman ZA, Zhang L, Morgan RA et al (2010) Tumour-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 70:6725–6734PubMedCrossRefGoogle Scholar
  7. 7.
    Chmielewski M, Kopecky C, Hombach AA, Abken H (2011) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumour cells that have shut down tumour antigen expression. Cancer Res 71:5697–5706PubMedCrossRefGoogle Scholar
  8. 8.
    Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, Leonardi AJ, Morgan RA, Wang E, Marincola FM, Trinchieri G et al (2011) IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumours. J Clin Invest 121:4746–4757PubMedCrossRefGoogle Scholar
  9. 9.
    Trinchieri G, Pflanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19:641–644PubMedCrossRefGoogle Scholar
  10. 10.
    Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–549PubMedCrossRefGoogle Scholar
  11. 11.
    Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4(+) T cells in the antitumour immune response. J Exp Med 188:2357–2368PubMedCrossRefGoogle Scholar
  12. 12.
    Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD, Vujanovic NL, Alber SM, Watkins SC, Okada H, Storkus WJ (2003) Intratumoural delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63:6378–6386PubMedGoogle Scholar
  13. 13.
    Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ (2007) Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4+ T cell responses in vitro. J Immunother 30:75–82PubMedCrossRefGoogle Scholar
  14. 14.
    Yoo JK, Cho JH, Lee SW, Sung YC (2002) IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J Immunol 169:3637–3643PubMedGoogle Scholar
  15. 15.
    Curtsinger JM, Lins DC, Mescher MF (2003) Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 197:1141–1151PubMedCrossRefGoogle Scholar
  16. 16.
    Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561–567PubMedCrossRefGoogle Scholar
  17. 17.
    Coughlin CM, Salhany KE, Wysocka M, Aruga E, Kurzawa H, Chang AE, Hunter CA, Fox JC, Trinchieri G, Lee WM (1998) Interleukin-12 and interleukin-18 synergistically induce murine tumour regression which involves inhibition of angiogenesis. J Clin Invest 101:1441–1452PubMedCrossRefGoogle Scholar
  18. 18.
    Zitvogel L, Robbins PD, Storkus WJ, Clarke MR, Maeurer MJ, Campbell RL, Davis CG, Tahara H, Schreiber RD, Lotze MT (1996) B7.1 costimulation markedly enhances IL 12-mediated antitumour immunity in vivo. Eur J Immunol 26:1335–1341PubMedCrossRefGoogle Scholar
  19. 19.
    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146PubMedCrossRefGoogle Scholar
  20. 20.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F et al (2006) Type, density, and location of immune cells within human colorectal tumours predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  21. 21.
    Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, Bajetta E, Pilotti S, Cerundolo V, Anichini A (2000) Peripheral burst of tumour-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin 12. Cancer Res 60:3559–3568PubMedGoogle Scholar
  22. 22.
    van Herpen CM, van der Laak JA, de Vries IJ, van Krieken JH, de Wilde PC, Balvers MG, Adema GJ, De Mulder PH (2005) Intratumoural recombinant human interleukin-12 administration in head and neck squamous cell carcinoma patients modifies locoregional lymph node architecture and induces natural killer cell infiltration in the primary tumour. Clin Cancer Res 11:1899–1909PubMedCrossRefGoogle Scholar
  23. 23.
    Car BD, Eng VM, Lipman JM, Anderson TD (1999) The toxicology of interleukin-12: a review. Toxicol Pathol 27:58–63PubMedCrossRefGoogle Scholar
  24. 24.
    Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumours. Science 278:1623–1626PubMedCrossRefGoogle Scholar
  25. 25.
    Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH, Park K, Kim K, Jeong HS, Kim JA, Nam SJ et al (2001) Interleukin 12 gene therapy of cancer by peritumoural injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 12:671–684PubMedCrossRefGoogle Scholar
  26. 26.
    Sun Y, Jurgovsky K, Moller P (1998) Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther 5:481–490PubMedCrossRefGoogle Scholar
  27. 27.
    Heinzerling L, Burg G, Dummer R, Maier T, Oberholzer PA, Schultz J, Elzaouk L, Pavlovic J, Moelling K (2005) Intratumoural injection of DNA encoding human interleukin-12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 16:35–48PubMedCrossRefGoogle Scholar
  28. 28.
    Curti A, Parenza M, Colombo MP (2003) Autologous and MHC class I-negative allogeneic tumour cells secreting IL-12 together cure disseminated A20 lymphoma. Blood 101:568–575PubMedCrossRefGoogle Scholar
  29. 29.
    Eisenring M, vom Berg J, Kristiansen G, Saller E, Becher B (2010) IL-12 initiates tumour rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol 11:1030–1038PubMedCrossRefGoogle Scholar
  30. 30.
    Cavallo F, Signorelli P, Giovarelli M, Musiani P, Modesti A, Brunda MJ, Colombo MP, Forni G (1997) Antitumour efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12. J Natl Cancer Inst 89:1049–1058PubMedCrossRefGoogle Scholar
  31. 31.
    Wagner HJ, Bollard CM, Vigouroux S, Huls MH, Anderson R, Prentice HG, Brenner MK, Heslop HE, Rooney CM (2004) A strategy for treatment of Epstein–Barr virus-positive Hodgkin’s disease by targeting interleukin 12 to the tumour environment using tumour antigen-specific T cells. Cancer Gene Ther 11:81–91PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, Rosenberg SA, Morgan RA (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumour environment. Mol Ther 19:751–759PubMedCrossRefGoogle Scholar
  33. 33.
    Fan H, Walters CS, Dunston GM, Tackey R (2002) IL-12 plays a significant role in the apoptosis of human T cells in the absence of antigenic stimulation. Cytokine 19:126–137PubMedCrossRefGoogle Scholar
  34. 34.
    Mehrotra PT, Wu D, Crim JA, Mostowski HS, Siegel JP (1993) Effects of IL-12 on the generation of cytotoxic activity in human CD8+ T lymphocytes. J Immunol 151:2444–2452PubMedGoogle Scholar
  35. 35.
    Dowell AC, Oldham KA, Bhatt RI, Lee SP, Searle PF (2011) Long-term proliferation of functional human NK cells, with conversion of CD56(dim) NK cells to a CD56 (bright) phenotype, induced by carcinoma cells co-expressing 4-1BBL and IL-12. Cancer Immunol Immunother. doi: 10.1007/s00262-011-1122-3
  36. 36.
    Díaz-Montero CM, Naga O, Zidan AA, Salem ML, Pallin M, Parmigiani A, Walker G, Wieder E, Komanduri K, Cole DJ, Montero AJ et al (2011) Synergy of brief activation of CD8 T-cells in the presence of IL-12 and adoptive transfer into lymphopenic hosts promotes tumour clearance and anti-tumour memory. Am J Cancer Res 1:882–896PubMedGoogle Scholar
  37. 37.
    Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumour-infiltrating myeloid cells induce tumour cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029PubMedCrossRefGoogle Scholar
  38. 38.
    Spiotto MT, Rowley DA, Schreiber H (2004) Bystander elimination of antigen loss variants in established tumours. Nat Med 10:294–298PubMedCrossRefGoogle Scholar
  39. 39.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD et al (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumour-specific CD8+ T cells. J Exp Med 202:907–912PubMedCrossRefGoogle Scholar
  40. 40.
    Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–531PubMedCrossRefGoogle Scholar
  41. 41.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRefGoogle Scholar
  42. 42.
    Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465PubMedCrossRefGoogle Scholar
  43. 43.
    Ju DW, Yang Y, Tao Q, Song WG, He L, Chen G, Gu S, Ting CC, Cao X (2000) Interleukin-18 gene transfer increases antitumour effects of suicide gene therapy through efficient induction of antitumour immunity. Gene Ther 7:1672–1679PubMedCrossRefGoogle Scholar
  44. 44.
    Munder M, Mallo M, Eichmann K, Modolell M (1998) Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108PubMedCrossRefGoogle Scholar
  45. 45.
    Durrant DM, Metzger DW (2010) IL-12 can alleviate Th17-mediated allergic lung inflammation through induction of pulmonary IL-10 expression. Mucosal Immunol 3:301–311PubMedCrossRefGoogle Scholar
  46. 46.
    Egilmez NK, Harden JL, Virtuoso LP, Schwendener RA, Kilinc MO (2011) Nitric oxide short-circuits interleukin-12-mediated tumour regression. Cancer Immunol Immunother 60:839–845PubMedCrossRefGoogle Scholar
  47. 47.
    Rosenberg SA (2011) Cell therapy for metastatic melanoma using CD8 enriched tumour infiltrating lymphocytes. NCT01236573

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Center for Molecular Medicine Cologne (CMMC), University of Cologne, and Clinic I for Internal MedicineUniversity Hospital CologneCologneGermany

Personalised recommendations