Cancer Immunology, Immunotherapy

, Volume 61, Issue 7, pp 1045–1053

Regulatory T-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer

  • Kristoffer Watten Brudvik
  • Karen Henjum
  • Einar Martin Aandahl
  • Bjørn Atle Bjørnbeth
  • Kjetil Taskén
Original article


Adaptive regulatory T cells (Tregs) contribute to an immunosuppressive microenvironment in colorectal cancer (CRC). Here, we examined whether the level of Treg-mediated inhibition of antitumor immune responses in patients with metastatic CRC (metCRC) selected for liver resection is associated with clinical outcome. Preoperatively and at follow-ups, we did flow-based phenotyping, examined antitumor immunity using peptides from carcinoembryonic antigen (CEA) protein in the presence or absence of CD4+CD25+CD127dim/− cells (Tregs) and determined cytokine and PGE2 levels in patient blood samples. At 18 months post-surgery, 8 patients were disease free (7 alive and 1 dead of unrelated cause) and 10 had experienced disease recurrence (7 alive and 3 dead of metCRC). Prior to surgery, the patients demonstrated Treg-mediated suppression of TNFα and IFNγ expression that could be perturbed through the PGE2/cAMP pathway and the immune suppression was significantly higher in the group that later developed disease recurrence (P = 0.046). Furthermore, the post-surgery plasma PGE2 levels were related to the clinical outcome (PGE2 levels of 280 ± 47 vs. 704 ± 153 pg/ml (mean ± SEM) for disease free and recurrent disease, respectively). T-cell phenotyping revealed higher frequencies of COX-2+ cells in the patients with recurrent disease. These findings support the notion that the level of Treg-mediated suppression of adaptive antitumor immune responses at the time of surgery may influence later clinical outcome of metCRC and provide valuable prognostic information.


Colorectal cancer Liver metastasis Regulatory T cells COX-2 PGE2 


  1. 1.
    Karsa LV, Lignini TA, Patnick J, Lambert R, Sauvaget C (2010) The dimensions of the CRC problem. Best Pract Res Clin Gastroenterol 24:381–396PubMedCrossRefGoogle Scholar
  2. 2.
    LeGolvan MP, Resnick M (2010) Pathobiology of colorectal cancer hepatic metastases with an emphasis on prognostic factors. J Surg Oncol 102:898–908PubMedCrossRefGoogle Scholar
  3. 3.
    Lewis AM, Martin RC (2006) The treatment of hepatic metastases in colorectal carcinoma. Am Surg 72:466–473PubMedGoogle Scholar
  4. 4.
    Dimitroulis D, Nikiteas N, Troupis T, Patsouras D, Skandalakis P, Kouraklis G (2010) Role of surgery in colorectal liver metastases: too early or too late? World J Gastroenterol 16:3484–3490PubMedCrossRefGoogle Scholar
  5. 5.
    Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, Bjornbeth BA, Tasken K (2008) Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother 57:813–821PubMedCrossRefGoogle Scholar
  6. 6.
    Fujino H, Toyomura K, Chen Xb, Regan JW, Murayama T (2011) Prostaglandin E2 regulates cellular migration via induction of vascular endothelial growth factor receptor-1 in HCA-7 human colon cancer cells. Biochem Pharmacol 81:379–387PubMedCrossRefGoogle Scholar
  7. 7.
    Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN (1998) Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58:362–366PubMedGoogle Scholar
  8. 8.
    Sheng H, Shao J, Washington MK, DuBois RN (2001) Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 276:18075–18081PubMedCrossRefGoogle Scholar
  9. 9.
    Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94:3336–3340PubMedCrossRefGoogle Scholar
  10. 10.
    Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716PubMedCrossRefGoogle Scholar
  11. 11.
    Mosenden R, Tasken K (2011) Cyclic AMP-mediated immune regulation - overview of mechanisms of action in T cells. Cell Signal 23:1009–1016PubMedCrossRefGoogle Scholar
  12. 12.
    Yaqub S, Tasken K (2008) Role for the cAMP-protein kinase A signaling pathway in suppression of antitumor immune responses by regulatory T cells. Crit Rev Oncog 14:57–77PubMedGoogle Scholar
  13. 13.
    Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536PubMedCrossRefGoogle Scholar
  14. 14.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666PubMedCrossRefGoogle Scholar
  15. 15.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  16. 16.
    Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, Harrop R, Torkington J, Rees BI, Williams GT, Gallimore AM, Godkin AJ (2006) CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS One 1:e129PubMedCrossRefGoogle Scholar
  17. 17.
    Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, Juenger S, Vlodavsky I, Khazaie K, Jaeger D, Reissfelder C, Antolovic D, Aigner M, Koch M, Beckhove P (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321PubMedGoogle Scholar
  18. 18.
    Steer HJ, Lake RA, Nowak AK, Robinson BW (2010) Harnessing the immune response to treat cancer. Oncogene 29:6301–6313PubMedCrossRefGoogle Scholar
  19. 19.
    Mahic M, Yaqub S, Johansson CC, Taskén K, Aandahl EM (2006) FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254PubMedGoogle Scholar
  20. 20.
    Cai Q, Gao YT, Chow WH, Shu XO, Yang G, Ji BT, Wen W, Rothman N, Li HL, Morrow JD, Zheng W (2006) Prospective study of urinary prostaglandin E2 metabolite and colorectal cancer risk. J Clin Oncol 24:5010–5016PubMedCrossRefGoogle Scholar
  21. 21.
    Gupta RA, DuBois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21PubMedCrossRefGoogle Scholar
  22. 22.
    Jacobs EJ, Thun MJ, Bain EB, Rodriguez C, Henley SJ, Calle EE (2007) A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. J Natl Cancer Inst 99:608–615PubMedCrossRefGoogle Scholar
  23. 23.
    Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, Beauchamp RD, DuBois RN (1997) Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 99:2254–2259PubMedCrossRefGoogle Scholar
  24. 24.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  25. 25.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  26. 26.
    Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, Giovannucci E, Dranoff G, Fuchs CS, Ogino S (2010) Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 222:350–366PubMedCrossRefGoogle Scholar
  27. 27.
    Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, Oertli D, Kettelhack C, Terracciano L, Tornillo L (2010) High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126:2635–2643PubMedGoogle Scholar
  28. 28.
    Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192PubMedCrossRefGoogle Scholar
  29. 29.
    Ling KL, Pratap SE, Bates GJ, Singh B, Mortensen NJ, George BD, Warren BF, Piris J, Roncador G, Fox SB, Banham AH, Cerundolo V (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7PubMedGoogle Scholar
  30. 30.
    Roncarolo MG, Gregori S (2008) Is FOXP3 a bona fide marker for human regulatory T cells? Eur J Immunol 38:925–927PubMedCrossRefGoogle Scholar
  31. 31.
    Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM (1999) Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20:1425–1431PubMedCrossRefGoogle Scholar
  32. 32.
    Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60:909–918PubMedCrossRefGoogle Scholar
  33. 33.
    Ling KL, Pratap SE, Bates GJ, Singh B, Mortensen NJ, George BD, Warren BF, Piris J, Roncador G, Fox SB, Banham AH, Cerundolo V (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kristoffer Watten Brudvik
    • 1
  • Karen Henjum
    • 1
    • 2
  • Einar Martin Aandahl
    • 1
    • 3
  • Bjørn Atle Bjørnbeth
    • 2
  • Kjetil Taskén
    • 1
  1. 1.Centre for Molecular Medicine Norway, Nordic EMBL Partnership and Biotechnology CentreUniversity of OsloOsloNorway
  2. 2.Section for Gastroenterology Surgery, Department of SurgeryOslo University Hospital UllevålOsloNorway
  3. 3.Section for Transplantation SurgeryOslo University Hospital RikshospitaletOsloNorway

Personalised recommendations