Cancer Immunology, Immunotherapy

, Volume 61, Issue 2, pp 239–247 | Cite as

Immunological monitoring of the tumor immunoenvironment for clinical trials

  • Anatoli M. Malyguine
  • Susan L. Strobl
  • Michael R. Shurin
Focussed Research Review

Abstract

Monitoring of immunotherapeutic clinical trials has undergone a considerable change in the last decade resulting in a general agreement that immune monitoring should guide the development of cancer vaccines. The emphasis on immune cell functions and quantitation of antigen-specific T cells have been playing a major role in the attempts to establish meaningful correlations between therapy-induced alterations in immune responses and clinical endpoints. However, one significant unresolved issue in modern immunotherapy is that when a tumor-specific cellular immune response is observed following the course of immunotherapy, it does not always lead to clinically proven cancer regression. This disappointing lack of a correlation between the tumor-specific cytotoxic immune responses and the clinical efficacy of immunotherapy may be explained, among other reasons, by the notion that the analysis of any single immunological parameter is not sufficient to provide clinically feasible information about the complex interactions between different cell subsets in the peripheral blood and immune, tumor, and stromal cells in the tumor milieu. By contrast, a systemic approach is required for improving the quality of a serial monitoring to ensure that it adequately and reliably measures potential changes induced in patients by administered vaccines or immunomodulators. Comprehensive evaluation of the balance between the immunostimulatory and immunosuppressive compartments of the immune system could be critical for a better understanding of how a given immunotherapy works or does not work in a particular clinical trial. New approaches to characterize tumor-infiltrating leukocytes, their phenotypic, biochemical, and genetic characteristics within the tumor microenvironment need to be developed and validated and should complement current monitoring techniques. These immune-monitoring assays for the local tumor immunoenvironment should be developed, validated, and standardized for reliability and consistency in order to establish the overall performance standards.

Keywords

Immunomonitoring Vaccine clinical trials Tumor immunoenvironment Leukocytes CITIM2011 

Notes

Acknowledgments

This project was supported by NIH RO1 CA154369 grant (to M.R.S.). This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract no. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev 3:361–370CrossRefGoogle Scholar
  2. 2.
    Groth A, Kloss S, von Strandmann EP, Koehl U, Koch J (2011) Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance. J Innate Immun 3:344–354PubMedCrossRefGoogle Scholar
  3. 3.
    Schmittel A, Keilholz U, Thiel E, Scheibenbogen C (2000) Quantification of tumor-specific T lymphocytes with the ELISPOT assay. J Immunother 23:289–295PubMedCrossRefGoogle Scholar
  4. 4.
    Malyguine A, Strobl S, Zaritskaya L, Baseler M, Shafer-Weaver K (2007) New approaches for monitoring CTL activity in clinical trials. Adv Exp Med Biol 601:273–284PubMedCrossRefGoogle Scholar
  5. 5.
    Malyguine A, Strobl SL, Shafer-Weaver KA, Ulderich T, Troke A, Baseler M, Kwak LW, Neelapu SS (2004) A modified human ELISPOT assay to detect specific responses to primary tumor cell targets. J Transl Med 2:9PubMedCrossRefGoogle Scholar
  6. 6.
    Rininsland FH, Helms T, Asaad RJ, Boehm BO, Tary-Lehmann M (2000) Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J Immunol Methods 240:143–155PubMedCrossRefGoogle Scholar
  7. 7.
    Shafer-Weaver K, Sayers T, Strobl S, Derby E, Ulderich T, Baseler M, Malyguine A (2003) The Granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J Transl Med 1:14PubMedCrossRefGoogle Scholar
  8. 8.
    Shafer-Weaver K, Rosenberg S, Strobl S, Gregory Alvord W, Baseler M, Malyguine A (2006) Application of the granzyme B ELISPOT assay for monitoring cancer vaccine trials. J Immunother 29:328–335PubMedCrossRefGoogle Scholar
  9. 9.
    Derby E, Reddy V, Kopp W, Nelson E, Baseler M, Sayers T, Malyguine A (2001) Three-color flow cytometric assay for the study of the mechanisms of cell-mediated cytotoxicity. Immunol Lett 78:35–39PubMedCrossRefGoogle Scholar
  10. 10.
    Burkett MW, Shafer-Weaver KA, Strobl S, Baseler M, Malyguine A (2005) A novel flow cytometric assay for evaluating cell-mediated cytotoxicity. J Immunother 28:396–402PubMedCrossRefGoogle Scholar
  11. 11.
    Zaritskaya L, Shafer-Weaver KA, Gregory MK, Strobl SL, Baseler M, Malyguine A (2009) Application of a flow cytometric cytotoxicity assay for monitoring cancer vaccine trials. J Immunother 32:186–194PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915PubMedCrossRefGoogle Scholar
  13. 13.
    Klebanoff CA, Acquavella N, Yu Z, Restifo NP (2011) Therapeutic cancer vaccines: are we there yet? Immunol Rev 239:27–44PubMedCrossRefGoogle Scholar
  14. 14.
    Shurin MR, Gregory M, Morris JC, Malyguine AM (2010) Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther 10:1539–1553PubMedCrossRefGoogle Scholar
  15. 15.
    Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS, Schwartzentruber D, Berman DM, Schwarz SL, Ngo LT, Mavroukakis SA, White DE, Steinberg SM (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175:6169–6176PubMedGoogle Scholar
  16. 16.
    Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, Zeh H, Holtzman MP, Reinhart TA, Whiteside TL, Butterfield LH, Hamilton RL, Potter DM, Pollack IF, Salazar AM, Lieberman FS (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336PubMedCrossRefGoogle Scholar
  17. 17.
    Ribas A, Camacho LH, Lee SM, Hersh EM, Brown CK, Richards JM, Rodriguez MJ, Prieto VG, Glaspy JA, Oseguera DK, Hernandez J, Villanueva A, Chmielowski B, Mitsky P, Bercovici N, Wasserman E, Landais D, Ross MI (2010) Multicenter phase II study of matured dendritic cells pulsed with melanoma cell line lysates in patients with advanced melanoma. J Transl Med 8:89PubMedCrossRefGoogle Scholar
  18. 18.
    Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, Kendra KL, White RL, Gonzalez R, Kuzel TM, Curti B, Leming PD, Whitman ED, Balkissoon J, Reintgen DS, Kaufman H, Marincola FM, Merino MJ, Rosenberg SA, Choyke P, Vena D, Hwu P (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127PubMedCrossRefGoogle Scholar
  19. 19.
    Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125:S272–S283PubMedCrossRefGoogle Scholar
  20. 20.
    Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L, Janetzki S, Kawakami Y, Kleen TO, Lee PP, Maccalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL Jr, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML (2011) Recommendations from the iSBTc-SITC/FDA/NCI workshop on immunotherapy biomarkers. Clin Cancer Res 17:3064–3076PubMedCrossRefGoogle Scholar
  21. 21.
    Gulley JL, Arlen PM, Madan RA, Tsang KY, Pazdur MP, Skarupa L, Jones JL, Poole DJ, Higgins JP, Hodge JW, Cereda V, Vergati M, Steinberg SM, Halabi S, Jones E, Chen C, Parnes H, Wright JJ, Dahut WL, Schlom J (2010) Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 59:663–674PubMedCrossRefGoogle Scholar
  22. 22.
    Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 236:567–579CrossRefGoogle Scholar
  23. 23.
    Talmadge JE (2011) Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 21:131–138PubMedCrossRefGoogle Scholar
  24. 24.
    Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553PubMedCrossRefGoogle Scholar
  25. 25.
    Gustafson MP, Lin Y, New KC, Bulur PA, O’Neill BP, Gastineau DA, Dietz AB (2010) Systemic immune suppression in glioblastoma: the interplay between CD14+ HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro-oncology 12:631–644PubMedCrossRefGoogle Scholar
  26. 26.
    Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14+ HLA-DRlow/− monocytes in prostate cancer. Prostate 70:443–455PubMedGoogle Scholar
  27. 27.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedCrossRefGoogle Scholar
  28. 28.
    Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449PubMedCrossRefGoogle Scholar
  29. 29.
    Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77PubMedCrossRefGoogle Scholar
  30. 30.
    Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G, Garrett-Mayer E, Montero AJ, Bronte V, Mandruzzato S (2010) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265CrossRefGoogle Scholar
  31. 31.
    Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356PubMedCrossRefGoogle Scholar
  32. 32.
    Quezada SA, Peggs KS, Simpson TR, Allison JP (2011) Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 241:104–118PubMedCrossRefGoogle Scholar
  33. 33.
    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2009) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102PubMedCrossRefGoogle Scholar
  34. 34.
    Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67:354–361PubMedCrossRefGoogle Scholar
  35. 35.
    Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudoh S, Ochiai A (2008) Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113:1387–1395PubMedCrossRefGoogle Scholar
  36. 36.
    Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27:5944–5951PubMedCrossRefGoogle Scholar
  37. 37.
    Murphy GF, Radu A, Kaminer M, Berd D (1993) Autologous melanoma vaccine induces inflammatory responses in melanoma metastases: relevance to immunologic regression and immunotherapy. J Investig Dermatol 100:335S–341SPubMedCrossRefGoogle Scholar
  38. 38.
    Jandus C, Bioley G, Speiser DE, Romero P (2008) Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother 57:1795–1805PubMedCrossRefGoogle Scholar
  39. 39.
    Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, Wei S, Zou L, Kryczek I, Hoyle G, Lackner A, Carmeliet P, Zou W (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64:5535–5538PubMedCrossRefGoogle Scholar
  40. 40.
    Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ (2009) Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137:1270–1279PubMedCrossRefGoogle Scholar
  41. 41.
    Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192PubMedCrossRefGoogle Scholar
  42. 42.
    Le DT, Ladle BH, Lee T, Weiss V, Yao X, Leubner A, Armstrong TD, Jaffee EM (2011) CD8 Foxp3 tumor infiltrating lymphocytes accumulate in the context of an effective anti-tumor response. Int J Cancer 129:636–647PubMedCrossRefGoogle Scholar
  43. 43.
    Chen KJ, Zhou L, Xie HY, Ahmed TE, Feng XW, Zheng SS (2011) Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Med Oncol (in press)Google Scholar
  44. 44.
    Liu F, Lang R, Zhao J, Zhang X, Pringle GA, Fan Y, Yin D, Gu F, Yao Z, Fu L (2011) CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 130:645–655PubMedCrossRefGoogle Scholar
  45. 45.
    Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625–4629PubMedGoogle Scholar
  46. 46.
    Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265PubMedCrossRefGoogle Scholar
  47. 47.
    Shimura S, Yang G, Ebara S, Wheeler TM, Frolov A, Thompson TC (2000) Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 60:5857–5861PubMedGoogle Scholar
  48. 48.
    Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16:348–353PubMedCrossRefGoogle Scholar
  49. 49.
    Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32:19–25PubMedCrossRefGoogle Scholar
  50. 50.
    Goedegebuure P, Mitchem JB, Porembka MR, Tan MC, Belt BA, Wang-Gillam A, Gillanders WE, Hawkins WG, Linehan DC (2011) Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer. Curr Cancer Drug Targets 11:734–751PubMedCrossRefGoogle Scholar
  51. 51.
    Naiditch H, Shurin MR, Shurin GV (2011) Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunol Res 50:276–285PubMedCrossRefGoogle Scholar
  52. 52.
    Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C (2007) Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 5:62PubMedCrossRefGoogle Scholar
  53. 53.
    Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS, Xu YF (2010) Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 54:497–505PubMedCrossRefGoogle Scholar
  54. 54.
    Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, Bajorin DF, Reuter VE, Herr H, Old LJ, Sato E (2007) CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci USA 104:3967–3972PubMedCrossRefGoogle Scholar
  55. 55.
    Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58:449–459PubMedCrossRefGoogle Scholar
  56. 56.
    Uppaluri R, Dunn GP, Lewis JS Jr (2008) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun 8:16PubMedGoogle Scholar
  57. 57.
    Ohtani H (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 7:4PubMedGoogle Scholar
  58. 58.
    Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955PubMedCrossRefGoogle Scholar
  59. 59.
    Ashida A, Boku N, Aoyagi K, Sato H, Tsubosa Y, Minashi K, Muto M, Ohtsu A, Ochiai A, Yoshida T, Yoshida S, Sasaki H (2006) Expression profiling of esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy: clinical implications. Int J Oncol 28:1345–1352PubMedGoogle Scholar
  60. 60.
    Lu P, Zhu XQ, Xu ZL, Zhou Q, Zhang J, Wu F (2009) Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 145:286–293PubMedCrossRefGoogle Scholar
  61. 61.
    Hornychova H, Melichar B, Tomsova M, Mergancova J, Urminska H, Ryska A (2008) Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer Invest 26:1024–1031PubMedCrossRefGoogle Scholar
  62. 62.
    Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, Pommerencke T, von Knebel Doeberitz M, Folprecht G, Luber B, Feyen N, Martens UM, Beckhove P, Gnjatic S, Schirmacher P, Herpel E, Weitz J, Grabe N, Jaeger D (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 71:5670–5677Google Scholar
  63. 63.
    Cipponi A, Wieers G, van Baren N, Coulie PG (2011) Tumor-infiltrating lymphocytes: apparently good for melanoma patients. But why? Cancer Immunol Immunother 60:1153–1160PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Anatoli M. Malyguine
    • 1
  • Susan L. Strobl
    • 1
  • Michael R. Shurin
    • 2
  1. 1.Laboratory of Cell-Mediated ImmunitySAIC-Frederick, Inc.FrederickUSA
  2. 2.Department of Pathology, Division of Clinical ImmunopathologyUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations