Advertisement

Cancer Immunology, Immunotherapy

, Volume 61, Issue 6, pp 827–838 | Cite as

Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines

  • I. PoschkeEmail author
  • Y. Mao
  • L. Adamson
  • F. Salazar-Onfray
  • G. Masucci
  • R. Kiessling
Original article

Abstract

Myeloid-derived suppressor cells (MDSC) are important regulators of the immune system and key players in tumor-induced suppression of T-cell responses. CD14+HLA-DR−/low MDSC have been detected in a great number of malignancies, including melanoma. MDSC are known to be impaired in their ability to differentiate along the myeloid lineage, e.g., into dendritic cells (DC). This is a concern for utilization of monocyte-derived DC for vaccination of patients with melanoma or other cancers exhibiting accumulation of CD14+ MDSC. When producing DC according to standard operating procedures of two currently ongoing clinical trials, we found that MDSC co-purified with monocytes isolated by elutriation. MDSC frequencies did not affect yield or viability of the produced DC, but induced a dose-dependent decrease in DC maturation, ability to take up antigen, migrate and induce T-cell IFNγ production. Changes in DC characteristics were most notable when ‘pathological’ frequencies of >50% CD14+HLA-DR− cells were present in the starting culture. The impaired DC quality could not be explained by altered cytokine production or increased oxidative stress in the cultures. Tracking of HLA-DR− cells throughout the culture period revealed that the observed changes were partially due to the impaired maturation and functionality of the originally HLA-DR− population, but also to their negative effects on HLA-DR+ cells. In conclusion, MDSC could be induced to differentiate into DC but, due to the impairment of overall DC vaccine quality when >50% HLA-DR− cells were present in the starting culture, their removal could be advisable.

Keywords

MDSC Dendritic cells Melanoma Vaccination Cancer 

Notes

Acknowledgments

This study was supported by grants from the Swedish Cancer Society, the Swedish Medical Research Council, the Cancer Society of Stockholm, the European Union (Grants “EUCAAD” and “DC-THERA”), the Karolinska Institutet, an “ALF-Project” grant from the Stockholm City Council, the Robert Lundgrens Foundation, the Sigurd and Elsa Goljes Memorial foundation and Lars Hiertas Memorial Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

262_2011_1143_MOESM1_ESM.pdf (149 kb)
Supplementary material 1 (PDF 149 kb)

References

  1. 1.
    Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975. doi: 10.1002/eji.201040895 PubMedCrossRefGoogle Scholar
  2. 2.
    Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22(2):238–244. doi: 10.1016/j.coi.2010.01.021 PubMedCrossRefGoogle Scholar
  3. 3.
    Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, Heyworth PG, Efron PA, Moldawer LL (2011) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17(3–4):281–292. doi: 10.2119/molmed.2010.00178 PubMedGoogle Scholar
  4. 4.
    Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O’Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204(6):1463–1474. doi: 10.1084/jem.20062602 PubMedCrossRefGoogle Scholar
  5. 5.
    Greifenberg V, Ribechini E, Rossner S, Lutz MB (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39(10):2865–2876. doi: 10.1002/eji.200939486 PubMedCrossRefGoogle Scholar
  6. 6.
    Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72(6):540–547. doi: 10.1111/j.1365-3083.2010.02463.x PubMedCrossRefGoogle Scholar
  7. 7.
    Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. doi: 10.1200/JCO.2006.08.5829 PubMedCrossRefGoogle Scholar
  8. 8.
    Gustafson MP, Lin Y, New KC, Bulur PA, O’Neill BP, Gastineau DA, Dietz AB (2010) Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol. doi: 10.1093/neuonc/noq001
  9. 9.
    Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243. doi: 10.1053/j.gastro.2008.03.020 PubMedCrossRefGoogle Scholar
  10. 10.
    Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB (2011) Immunosuppressive CD14+HLA-DR(low)/− monocytes in B-cell non-Hodgkin lymphoma. Blood 117(3):872–881. doi: 10.1182/blood-2010-05-283820 PubMedCrossRefGoogle Scholar
  11. 11.
    Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66(18):9299–9307. doi: 10.1158/0008-5472.CAN-06-1690 PubMedCrossRefGoogle Scholar
  12. 12.
    Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. doi: 10.1158/0008-5472.CAN-09-3767 PubMedCrossRefGoogle Scholar
  13. 13.
    Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760PubMedGoogle Scholar
  14. 14.
    Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14+HLA-DRlow/− monocytes in prostate cancer. Prostate 70(4):443–455. doi: 10.1002/pros.21078 PubMedGoogle Scholar
  15. 15.
    Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. doi: 10.1084/jem.20080132 PubMedCrossRefGoogle Scholar
  16. 16.
    Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63(15):4441–4449PubMedGoogle Scholar
  17. 17.
    Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14(24):8270–8278. doi: 10.1158/1078-0432.CCR-08-0165 PubMedCrossRefGoogle Scholar
  18. 18.
    Schuler G (2010) Dendritic cells in cancer immunotherapy. Eur J Immunol 40(8):2123–2130. doi: 10.1002/eji.201040630 PubMedCrossRefGoogle Scholar
  19. 19.
    Dietz AB, Padley DJ, Butler GW, Maas ML, Greiner CW, Gastineau DA, Vuk-Pavlovic S (2004) Clinical-grade manufacturing of DC from CD14+ precursors: experience from phase I clinical trials in CML and malignant melanoma. Cytotherapy 6(6):563–570PubMedCrossRefGoogle Scholar
  20. 20.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi: 10.1056/NEJMoa1001294 PubMedCrossRefGoogle Scholar
  21. 21.
    Suso EM, Dueland S, Rasmussen AM, Vetrhus T, Aamdal S, Kvalheim G, Gaudernack G (2011) hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunol Immunother 60(6):809–818. doi: 10.1007/s00262-011-0991-9 PubMedCrossRefGoogle Scholar
  22. 22.
    Aguilera R, Saffie C, Tittarelli A, Gonzalez FE, Ramirez M, Reyes D, Pereda C, Hevia D, Garcia T, Salazar L, Ferreira A, Hermoso M, Mendoza-Naranjo A, Ferrada C, Garrido P, Lopez MN, Salazar-Onfray F (2011) Heat-shock induction of tumor-derived danger signals mediates rapid monocyte differentiation into clinically effective dendritic cells. Clin Cancer Res 17(8):2474–2483. doi: 10.1158/1078-0432.CCR-10-2384 PubMedCrossRefGoogle Scholar
  23. 23.
    Lopez MN, Pereda C, Segal G, Munoz L, Aguilera R, Gonzalez FE, Escobar A, Ginesta A, Reyes D, Gonzalez R, Mendoza-Naranjo A, Larrondo M, Compan A, Ferrada C, Salazar-Onfray F (2009) Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol 27(6):945–952. doi: 10.1200/JCO.2008.18.0794 PubMedCrossRefGoogle Scholar
  24. 24.
    Wang S, Hong S, Yang J, Qian J, Zhang X, Shpall E, Kwak LW, Yi Q (2006) Optimizing immunotherapy in multiple myeloma: Restoring the function of patients’ monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 108(13):4071–4077. doi: 10.1182/blood-2006-04-016980 PubMedCrossRefGoogle Scholar
  25. 25.
    Breloer M, Fleischer B (2008) CD83 regulates lymphocyte maturation, activation and homeostasis. Trends Immunol 29(4):186–194. doi: 10.1016/j.it.2008.01.009 PubMedCrossRefGoogle Scholar
  26. 26.
    Tschoep K, Manning TC, Harlin H, George C, Johnson M, Gajewski TF (2003) Disparate functions of immature and mature human myeloid dendritic cells: implications for dendritic cell-based vaccines. J Leukoc Biol 74(1):69–80PubMedCrossRefGoogle Scholar
  27. 27.
    Dieckmann D, Schultz ES, Ring B, Chames P, Held G, Hoogenboom HR, Schuler G (2005) Optimizing the exogenous antigen loading of monocyte-derived dendritic cells. Int Immunol 17(5):621–635. doi: 10.1093/intimm/dxh243 PubMedCrossRefGoogle Scholar
  28. 28.
    de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJ (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9(14):5091–5100PubMedGoogle Scholar
  29. 29.
    Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157. doi: 10.1158/1078-0432.CCR-08-1332 PubMedCrossRefGoogle Scholar
  30. 30.
    Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203(12):2691–2702. doi: 10.1084/jem.20061104 PubMedCrossRefGoogle Scholar
  31. 31.
    Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee JH, Gabrilovich DI (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16(6):1812–1823. doi: 10.1158/1078-0432.CCR-09-3272 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • I. Poschke
    • 1
    Email author
  • Y. Mao
    • 1
  • L. Adamson
    • 1
  • F. Salazar-Onfray
    • 2
  • G. Masucci
    • 1
  • R. Kiessling
    • 1
  1. 1.Department of Oncology and PathologyCancer Center Karolinska (R8:01), Karolinska InstitutetStockholmSweden
  2. 2.Millennium Institute on Immunology and Immunotherapy, Faculty of MedicineInstitute of Biomedical Sciences, University of ChileSantiagoChile

Personalised recommendations