Cancer Immunology, Immunotherapy

, Volume 61, Issue 3, pp 385–396 | Cite as

Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens

  • Bianca Altvater
  • Sibylle Pscherer
  • Silke Landmeier
  • Sareetha Kailayangiri
  • Barbara Savoldo
  • Heribert Juergens
  • Claudia RossigEmail author
Original article


Specific cellular immunotherapy of cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that recognize tumor-associated self-antigens. Here, we investigated the capacity of human γδ T cells to induce expansion of CD8+ T cells specific for peptides derived from the weakly immunogenic tumor-associated self-antigens PRAME and STEAP1. Coincubation of aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+), loaded with HLA-A*02-restricted epitopes of PRAME, with autologous peripheral blood CD8+ T cells stimulated the expansion of peptide-specific cytolytic effector memory T cells. Moreover, peptide-loaded γδ T cells efficiently primed antigen-naive CD45RA+ CD8+ T cells against PRAME peptides. Direct comparisons with mature DCs revealed equal potency of γδ T cells and DCs in inducing primary T-cell responses and peptide-specific T-cell activation and expansion. Antigen presentation by γδ T-APCs was not able to overcome the limited capacity of peptide-specific T cells to interact with targets expressing full-length antigen. Importantly, T cells with regulatory phenotype (CD4+CD25hiFoxP3+) were lower in cocultures with γδ T cells compared to DCs. In summary, bisphosphonate-activated γδ T cells permit generation of CTLs specific for weakly immunogenic tumor-associated epitopes. Exploiting this strategy for effective immunotherapy of cancer requires strategies that enhance the avidity of CTL responses to allow for efficient targeting of cancer.


Antigen presentation γδ T cells Tumor antigens Self-antigens Cellular therapy 



This work was supported by a grant from the Deutsche Krebshilfe (to C. R.) and by a grant from the Wilhelm-Sander-Stiftung (to C.R.).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

262_2011_1111_MOESM1_ESM.pdf (130 kb)
Supplementary material 1 (PDF 129 kb)


  1. 1.
    Haupt R, Garaventa A, Gambini C, Parodi S, Cangemi G, Casale F, Viscardi E, Bianchi M, Prete A, Jenkner A, Luksch R, Di Cataldo A, Favre C, D’Angelo P, Zanazzo GA, Arcamone G, Izzi GC, Gigliotti AR, Pastore G, De Bernardi B (2010) Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry. J Clin Oncol 28:2331–2338PubMedCrossRefGoogle Scholar
  2. 2.
    Ladenstein R, Potschger U, Le Deley MC, Whelan J, Paulussen M, Oberlin O, van den Hurk B, Dirksen U, Hjorth L, Michon J, Lewis I, Craft A, Jurgens H (2010) Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol 28:3284–3291PubMedCrossRefGoogle Scholar
  3. 3.
    Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6:199–208PubMedCrossRefGoogle Scholar
  4. 4.
    Hubert RS, Vivanco I, Chen E, Rastegar S, Leong K, Mitchell SC, Madraswala R, Zhou YH, Kuo J, Raitano AB, Jakobovits A, Saffran DC, Afar DEH (1999) STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA 96:14523–14528PubMedCrossRefGoogle Scholar
  5. 5.
    Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M (2004) The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 10:4307–4313PubMedCrossRefGoogle Scholar
  6. 6.
    Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B (2002) Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 133:118–123PubMedCrossRefGoogle Scholar
  7. 7.
    Quintarelli C, Dotti G, De Angelis B, Hoyos V, Mims M, Luciano L, Heslop HE, Rooney CM, Pane F, Savoldo B (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112:1876–1885PubMedCrossRefGoogle Scholar
  8. 8.
    Maecker B, Mougiakakos D, Zimmermann M, Behrens M, Hollander S, Schrauder A, Schrappe M, Welte K, Klein C (2006) Dendritic cell deficiencies in pediatric acute lymphoblastic leukemia patients. Leukemia 20:645–649PubMedCrossRefGoogle Scholar
  9. 9.
    Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108:2655–2661PubMedCrossRefGoogle Scholar
  10. 10.
    Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309:264–268PubMedCrossRefGoogle Scholar
  11. 11.
    Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345PubMedCrossRefGoogle Scholar
  12. 12.
    Kunzmann V, Bauer E, Wilhelm M (1999) Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340:737–738PubMedCrossRefGoogle Scholar
  13. 13.
    Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, Golan DE, Brenner MB (1995) Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity 3:495–507PubMedCrossRefGoogle Scholar
  14. 14.
    Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375:155–158PubMedCrossRefGoogle Scholar
  15. 15.
    Landmeier S, Altvater B, Pscherer S, Juergens H, Varnholt L, Hansmeier A, Bollard CM, Moosmann A, Bisping G, Rossig C (2009) Activated human gammadelta T cells as stimulators of specific CD8+ T-cell responses to subdominant Epstein Barr virus epitopes: potential for immunotherapy of cancer. J Immunother 32:310–321PubMedCrossRefGoogle Scholar
  16. 16.
    Kinsella TM, Nolan GP (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 7:1405–1413PubMedCrossRefGoogle Scholar
  17. 17.
    Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, Campana D, Juergens H, Pule M, Rossig C (2009) 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res 15:4857–4866PubMedCrossRefGoogle Scholar
  18. 18.
    Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, van Veelen PA, Kloosterman-Joosten AM, Vissers DCJ, ten Bosch GJA, Kester MGD, Sijts A, Drijfhout JW, Ossendorp F, Offringa R, Melief CJM (2001) Efficient identification of novel HLA-A*0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 193:73–88PubMedCrossRefGoogle Scholar
  19. 19.
    Quintarelli C, Dotti G, Hasan ST, De Angelis B, Hoyos V, Errichiello S, Mims M, Luciano L, Shafer J, Leen AM, Heslop HE, Rooney CM, Pane F, Brenner MK, Savoldo B (2011) High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood 117:3353–3362PubMedCrossRefGoogle Scholar
  20. 20.
    Alves PMS, Faure O, Graff-Dubois S, Cornet S, Bolonakis I, Gross DA, Miconnet I, Chouaib S, Fizazi K, Soria JC, Lemonnier FA, Kosmatopoulos K (2006) STEAP, a prostate tumor antigen, is a target of human CD8(+) T cells. Cancer Immunol Immunother 55:1515–1523PubMedCrossRefGoogle Scholar
  21. 21.
    Rodeberg DA, Nuss RA, Elsawa SF, Celis E (2005) Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor cells by peptide antigen-induced cytotoxic T lymphocytes. Clin Cancer Res 11:4545–4552PubMedCrossRefGoogle Scholar
  22. 22.
    Machlenkin A, Paz A, Haim EB, Goldberger O, Finkel E, Tirosh B, Volovitz I, Vadai E, Lugassy G, Cytron S, Lemonnier F, Tzehoval E, Eisenbach L (2005) Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy. Cancer Res 65:6435–6442PubMedCrossRefGoogle Scholar
  23. 23.
    Sadovnikova E, Jopling LA, Soo KS, Stauss HJ (1998) Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol 28:193–200PubMedCrossRefGoogle Scholar
  24. 24.
    Karbach J, Gnjatic S, Pauligk C, Bender A, Maeurer M, Schultze JL, Nadler K, Wahle C, Knuth A, Old LJ, Jager E (2007) Tumor-reactive CD8+ T-cell clones in patients after NY-ESO-1 peptide vaccination. Int J Cancer 121:2042–2048PubMedCrossRefGoogle Scholar
  25. 25.
    Rezvani K, Grube M, Brenchley JM, Sconocchia G, Fujiwara H, Price DA, Gostick E, Yamada K, Melenhorst J, Childs R, Hensel N, Douek DC, Barrett AJ (2003) Functional leukemia-associated antigen-specific memory CD8(+) T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 102:2892–2900PubMedCrossRefGoogle Scholar
  26. 26.
    Tajeddine N, Gala JL, Louis M, Van Schoor M, Tombal B, Gailly P (2005) Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 65:7348–7355PubMedCrossRefGoogle Scholar
  27. 27.
    Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, Dieli F, Stassi G (2009) Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 182:7287–7296PubMedCrossRefGoogle Scholar
  28. 28.
    Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C, Salot S, Saiagh S, Audrain M, Rimbert M, Lafaye-de Micheaux S, Tiollier J, Negrier S (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609PubMedCrossRefGoogle Scholar
  29. 29.
    Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476PubMedCrossRefGoogle Scholar
  30. 30.
    Brandes M, Willimann K, Bioley G, Levy N, Eberl M, Luo M, Tampe R, Levy F, Romero P, Moser B (2009) Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 106:2307–2312PubMedCrossRefGoogle Scholar
  31. 31.
    Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, Young JW (2009) Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114:555–563PubMedCrossRefGoogle Scholar
  32. 32.
    Rischer M, Pscherer S, Duwe S, Vormoor J, Jurgens H, Rossig C (2004) Human gamma delta T cells as mediators of chimaeric-receptor redirected anti-tumour immunity. Br J Haematol 126:583–592PubMedCrossRefGoogle Scholar
  33. 33.
    Foster AE, Leen AM, Lee T, Okamura T, Lu A, Vera J, Atkinson R, Bollard CM, Dotti G, Rooney CM (2007) Autologous designer antigen-presenting cells by gene modification of T lymphocyte blasts with IL-7 and IL-12. J Immunother 30:506–516PubMedCrossRefGoogle Scholar
  34. 34.
    Quintarelli C, Vera JF, Savoldo B, Attianese GMPG, Pule M, Foster AE, Heslop HE, Rooney CM, Brenner MK, Dotti G (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110:2793–2802PubMedCrossRefGoogle Scholar
  35. 35.
    Gottschalk S, Edwards OL, Sili U, Huls MH, Goltsova T, Davis AR, Heslop HE, Rooney CM (2003) Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood 101:1905–1912PubMedCrossRefGoogle Scholar
  36. 36.
    Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S, Wang C, Davis MM (2003) Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 111:639–647PubMedGoogle Scholar
  37. 37.
    Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y (2002) Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol 169:2164–2171PubMedGoogle Scholar
  38. 38.
    Yan MY, Himoudi N, Pule M, Sebire N, Poon E, Blair A, Williams O, Anderson J (2008) Development of cellular immune responses against PAX5, a novel target for cancer immunotherapy. Cancer Res 68:8058–8065PubMedCrossRefGoogle Scholar
  39. 39.
    Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, Osman M, Digard P, Canaday DH, Gustafsson K (2009) Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol 183:5622–5629PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bianca Altvater
    • 1
  • Sibylle Pscherer
    • 1
  • Silke Landmeier
    • 1
  • Sareetha Kailayangiri
    • 1
  • Barbara Savoldo
    • 2
  • Heribert Juergens
    • 1
  • Claudia Rossig
    • 1
    Email author
  1. 1.Department of Pediatric Hematology and OncologyUniversity Children’s Hospital MuensterMuensterGermany
  2. 2.Baylor College of MedicineCenter for Cell and Gene TherapyHoustonUSA

Personalised recommendations