Advertisement

Cancer Immunology, Immunotherapy

, Volume 61, Issue 3, pp 353–362 | Cite as

Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome

  • Yingzi Ge
  • Christoph Domschke
  • Natalija Stoiber
  • Sarah Schott
  • Joerg Heil
  • Joachim Rom
  • Maria Blumenstein
  • Janina Thum
  • Christof Sohn
  • Andreas Schneeweiss
  • Philipp BeckhoveEmail author
  • Florian Schuetz
Original article

Abstract

Severe immune suppression is frequent in late-stage tumor patients and promotes tumor immune evasion and subsequent tumor progression. Regulatory T cells (Treg) are major suppressors of anti-tumor immune responses. Therefore, targeting of Treg has become a key goal of anti-tumor therapy. Several preclinical and clinical observations suggest that Treg can be depleted by cyclophosphamide. Over a period of 3 months, we investigated the effect of metronomic low-dose cyclophosphamide on Treg numbers, suppressive capacity and proliferation on endogenous anti-tumor T-cell responses and on their correlation to clinical outcome in 12 patients with treatment-refractory metastasized breast cancer who received single-agent 50 mg cyclophosphamide p.o. daily. Cyclophosphamide treatment initially caused a significant reduction in circulating Treg by more than 40% (P = 0.002). However, Treg numbers completely recovered during the treatment due to increased proliferative activity and maintained their suppressive capacity. Treg depletion coincided with a strong increase in breast tumor–reactive T cells (P = 0.03) that remained at high levels during the whole period. Numbers of tumor-reactive T cells but not of Treg correlated with disease stabilization (P = 0.03) and overall survival (P = 0.027). We conclude that metronomic low-dose cyclophosphamide only transiently reduces Treg but induces stable tumor-specific T-cell responses, which correlate with improved clinical outcome in advanced-stage breast cancer patients.

Keywords

Breast cancer Immunomodulation Regulatory T cells Tumor-specific T cells Low-dose cyclophosphamide 

Notes

Acknowledgments

No grants or financial support were received by any of the authors in relation to this study or the writing of this article.

Conflict of interest

None declared.

References

  1. 1.
    Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352PubMedCrossRefGoogle Scholar
  2. 2.
    Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumour immunity and transplantation tolerance. Immunol Rev 182:18–32PubMedCrossRefGoogle Scholar
  3. 3.
    Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307PubMedCrossRefGoogle Scholar
  4. 4.
    Solomayer EF, Feuerer M, Bai L, Umansky V, Beckhove P, Meyberg GC, Bastert G, Schirrmacher V, Diel IJ (2003) Influence of adjuvant hormone therapy and chemotherapy on the immune system analysed in the bone marrow of patients with breast cancer. Clin Cancer Res 9:174–180Google Scholar
  5. 5.
    Mahnke YD, Schwendemann J, Beckhove P, Schirrmacher V (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115:325–336Google Scholar
  6. 6.
    Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M, Debes GF, Lauber J, Frey O, Przybylski GK, Niesner U, de la Rosa M, Schmidt CA, Bräuer R, Buer J, Scheffold A, Hamann A (2004) Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 199:303–313PubMedCrossRefGoogle Scholar
  7. 7.
    Liu Z, Kim JH, Falo LD Jr, You Z (2009) Tumor regulatory T cells potently abrogate antitumour immunity. J Immunol 182:6160–6167PubMedCrossRefGoogle Scholar
  8. 8.
    Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, Juenger S, Vlodavsky I, Khazaie K, Jaeger D, Reissfelder C, Antolovic D, Aigner M, Koch M, Beckhove P (2009) Antigen-specific Tregs control T-cell responses against a limited repertoire of tumour antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321PubMedGoogle Scholar
  9. 9.
    Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumour microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761PubMedGoogle Scholar
  10. 10.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Erdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zim Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  11. 11.
    Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4(+)CD25(+) T cells in tumours from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772PubMedGoogle Scholar
  12. 12.
    Viguier M, Lemaître F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Konrilsky P, Ferradini L (2004) Foxp3 expressing CD4+ CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173:1444–1453PubMedGoogle Scholar
  13. 13.
    Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumour immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumours to be curative. Eur J Immunol 34:336–344PubMedCrossRefGoogle Scholar
  14. 14.
    Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868PubMedCrossRefGoogle Scholar
  15. 15.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648PubMedCrossRefGoogle Scholar
  16. 16.
    Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V (2001) Therapy of human tumours in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 7:452–458PubMedCrossRefGoogle Scholar
  17. 17.
    Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D, Koch M, Büchler M, Weitz J, Schirrmacher V, Beckhove P (2007) Role of tumour endothelium in CD4+CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 99:1188–1199PubMedCrossRefGoogle Scholar
  18. 18.
    Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416PubMedGoogle Scholar
  19. 19.
    Kämmerer U, Thanner F, Kapp M, Dietl J, Sütterlin M (2003) Expression of tumour markers on breast and ovarian cancer cell lines. Anticancer Res 23:1051–1055PubMedGoogle Scholar
  20. 20.
    Gückel B, Stumm S, Rentzsch C, Marmé A, Mannhardt G, Wallwiener D (2005) A CD80-transfected human breast cancer cell variant induces HER-2/neu-specific T cells in HLA-A*02-matched situations in vitro as well as in vivo. Cancer Immunol Immunother 54:129–140PubMedCrossRefGoogle Scholar
  21. 21.
    Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532PubMedCrossRefGoogle Scholar
  22. 22.
    Colleoni M, Rocca A, Sandri MT, Zorzino L, Masci G, Nolè F, Peruzzotti G, Robertson C, Orlando L, Cinieri S, Viale G, Goldhirsch A (2002) Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13:73–80PubMedCrossRefGoogle Scholar
  23. 23.
    Scharovsky OG, Mainetti LE, Rozados VR (2009) Metronomic chemotherapy: changing the paradigm that more is better. Curr Oncol 16:7–15PubMedCrossRefGoogle Scholar
  24. 24.
    Correale P, Cusi MG, Tsang KY, Del Vecchio MT, Marsili S, Placa ML, Intrivici L, Aquino A, Micheli L, Nencini C, Ferrari F, Giorgi G, Bonmassar E, Francini G (2005) Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumour activity in metastatic colon cancer patients. J Clin Oncol 23:8950–8958PubMedCrossRefGoogle Scholar
  25. 25.
    Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118:1991–2001PubMedCrossRefGoogle Scholar
  26. 26.
    Sommerfeldt N, Schütz F, Sohn C, Förster J, Schirrmacher V, Beckhove P (2006) The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res 66:8258–8265PubMedCrossRefGoogle Scholar
  27. 27.
    Messaoudi I, Guevara Patin JA, Dyall R, LeMaoult J, Nikolich-Zugich J (2002) Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science 298:1797–1800PubMedCrossRefGoogle Scholar
  28. 28.
    Dellapasqua S, Bertolini F, Baqnardi V, Campagnoli E, Scarano E, Torrisi R, Shaked Y, Mancuso P, Goldhirsch A, Rocca A, Pietri E, Colleoni M (2008) Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol 26:4899–4905PubMedCrossRefGoogle Scholar
  29. 29.
    Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943PubMedGoogle Scholar
  30. 30.
    Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y, Kerbel RS (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B (2010) Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 70:4850–4858PubMedCrossRefGoogle Scholar
  32. 32.
    Nakahara T, Uchi H, Lesokhin AM, Avogadri F, Rizzuto GA, Hirschhorn-Cymerman D, Panageas KS, Merghoub T, Wolchok JD, Houghton AN (2010) Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs. Blood 115:4384–4392PubMedCrossRefGoogle Scholar
  33. 33.
    Radojcic V, Bezak KB, Skarica M, Pletneva MA, Yoshimura K, Schulick RD, Luznik L (2010) Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol Immunother 59:137–148PubMedCrossRefGoogle Scholar
  34. 34.
    Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167–178PubMedCrossRefGoogle Scholar
  35. 35.
    Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196:851–857PubMedCrossRefGoogle Scholar
  36. 36.
    Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458PubMedCrossRefGoogle Scholar
  37. 37.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte associated antigen-4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yingzi Ge
    • 1
  • Christoph Domschke
    • 2
  • Natalija Stoiber
    • 3
  • Sarah Schott
    • 2
  • Joerg Heil
    • 2
  • Joachim Rom
    • 2
  • Maria Blumenstein
    • 2
  • Janina Thum
    • 2
  • Christof Sohn
    • 2
  • Andreas Schneeweiss
    • 2
  • Philipp Beckhove
    • 1
    Email author
  • Florian Schuetz
    • 2
  1. 1.Division of Translational Immunology, Tumor Immunology ProgramGerman Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT)HeidelbergGermany
  2. 2.Department of Gynecology and ObstetricsUniversity Hospital of Heidelberg, National Center for Tumor Diseases (NCT)HeidelbergGermany
  3. 3.Department of Gynecology and ObstetricsBaden Cantonal HospitalBadenSwitzerland

Personalised recommendations