Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma

  • Adam J. Bograd
  • Kei Suzuki
  • Eva Vertes
  • Christos Colovos
  • Eduardo A. Morales
  • Michel Sadelain
  • Prasad S. Adusumilli
Review

Abstract

Malignant pleural mesothelioma (MPM) is an aggressive, primary pleural malignancy with poor prognosis, hypothesized to originate from a chronic inflammatory state within the pleura. Similar to what has been observed in other solid tumors (melanoma, ovarian and colorectal cancer), clinical and pre-clinical MPM investigations have correlated anti-tumor immune responses with improved survival. As such, a better understanding of the complex MPM tumor microenvironment is imperative in strategizing successful immunotherapies. Herein, we review the immune responses vital to the development and progression of MPM, as well as assess the role of immunomodulatory therapies, highlighting recent pre-clinical and clinical immunotherapy investigations.

Keywords

Mesothelioma Immune response to cancer Immunotherapy Immunomodulation Tumor antigens 

References

  1. 1.
    Krug LM, Pass HI, Rusch VW, Kindler HL, Sugarbaker DJ, Rosenzweig KE, Flores R, Friedberg JS, Pisters K, Monberg M, Obasaju CK, Vogelzang NJ (2009) Multicenter phase II trial of neoadjuvant pemetrexed plus cisplatin followed by extrapleural pneumonectomy and radiation for malignant pleural mesothelioma. J Clin Oncol 27:3007–3013PubMedCrossRefGoogle Scholar
  2. 2.
    Flores RM, Krug LM, Rosenzweig KE, Venkatraman E, Vincent A, Heelan R, Akhurst T, Rusch VW (2006) Induction chemotherapy, extrapleural pneumonectomy, and postoperative high-dose radiotherapy for locally advanced malignant pleural mesothelioma: a phase II trial. J Thorac Oncol 1:289–295PubMedCrossRefGoogle Scholar
  3. 3.
    Anraku M, Cunningham KS, Yun Z, Tsao M-S, Zhang L, Keshavjee S, Johnston MR, de Perrot M (2008) Impact of tumor-infiltrating T cells on survival in patients with malignant pleural mesothelioma. J Thorac Cardiovasc Surg 135:823–829PubMedCrossRefGoogle Scholar
  4. 4.
    Yamada N, Oizumi S, Kikuchi E, Shinagawa N, Konishi-Sakakibara J, Ishimine A, Aoe K, Gemba K, Kishimoto T, Torigoe T, Nishimura M (2010) CD8+ tumor-infiltrating lymphocytes predict favorable prognosis in malignant pleural mesothelioma after resection. Cancer Immunol Immunother 59:1543–1549PubMedCrossRefGoogle Scholar
  5. 5.
    Hegmans JP, Hemmes A, Hammad H, Boon L, Hoogsteden HC, Lambrecht BN (2006) Mesothelioma environment comprises cytokines and T-regulatory cells that suppress immune responses. Eur Respir J 27:1086–1095PubMedCrossRefGoogle Scholar
  6. 6.
    Davis JM (1979) The histopathology and ultrastructure of pleural mesotheliomas produced in the rat by injections of crocidolite asbestos. Br J Exp Pathol 60:642–652PubMedGoogle Scholar
  7. 7.
    Moalli PA, MacDonald JL, Goodglick LA, Kane AB (1987) Acute injury and regeneration of the mesothelium in response to asbestos fibers. Am J Pathol 128:426–445PubMedGoogle Scholar
  8. 8.
    Shin ML, Firminger HI (1973) Acute and chronic effects of intraperitoneal injection of two types of asbestos in rats with a study of the histopathogenesis and ultrastructure of resulting mesotheliomas. Am J Pathol 70:291–313PubMedGoogle Scholar
  9. 9.
    Wagner JC, Berry G (1969) Mesotheliomas in rats following inoculation with asbestos. Br J Cancer 23:567–581PubMedCrossRefGoogle Scholar
  10. 10.
    Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666–1680PubMedGoogle Scholar
  11. 11.
    Hansen K, Mossman BT (1987) Generation of superoxide (O2 ·) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47:1681–1686PubMedGoogle Scholar
  12. 12.
    Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677PubMedCrossRefGoogle Scholar
  13. 13.
    Tanaka S, Choe N, Hemenway DR, Zhu S, Matalon S, Kagan E (1998) Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat. J Clin Investig 102:445–454PubMedCrossRefGoogle Scholar
  14. 14.
    Choe N, Tanaka S, Xia W, Hemenway DR, Roggli VL, Kagan E (1997) Pleural macrophage recruitment and activation in asbestos-induced pleural injury. Environ Health Perspect 105 Suppl 5:1257–1260PubMedGoogle Scholar
  15. 15.
    Wang Y, Faux SP, Hallden G, Kirn DH, Houghton CE, Lemoine NR, Patrick G (2004) Interleukin-1beta and tumour necrosis factor-alpha promote the transformation of human immortalised mesothelial cells by erionite. Int J Oncol 25:173–178PubMedGoogle Scholar
  16. 16.
    Donaldson K, Murphy F, Duffin R, Poland C (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5PubMedCrossRefGoogle Scholar
  17. 17.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nano 3:423–428CrossRefGoogle Scholar
  18. 18.
    Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53 +/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116PubMedCrossRefGoogle Scholar
  19. 19.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213PubMedCrossRefGoogle Scholar
  21. 21.
    Suzuki K, Kadota K, Sima CS, Sadelain M, Rusch VW, Travis WD, Adusumilli PS (2011) Chronic inflammation in tumor stroma is an independent predictor of prolonged survival in epithelioid malignant pleural mesothelioma patients. Cancer Immunol Immunother, Jul 19 [Epub ahead of print]Google Scholar
  22. 22.
    Amini RM, Aaltonen K, Nevanlinna H, Carvalho R, Salonen L, Heikkila P, Blomqvist C (2007) Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer 7:165PubMedCrossRefGoogle Scholar
  23. 23.
    Chan JK, Magistris A, Loizzi V, Lin F, Rutgers J, Osann K, DiSaia PJ, Samoszuk M (2005) Mast cell density, angiogenesis, blood clotting, and prognosis in women with advanced ovarian cancer. Gynecol Oncol 99:20–25PubMedCrossRefGoogle Scholar
  24. 24.
    Ibaraki T, Muramatsu M, Takai S, Jin D, Maruyama H, Orino T, Katsumata T, Miyazaki M (2005) The relationship of tryptase- and chymase-positive mast cells to angiogenesis in stage I non-small cell lung cancer. Eur J Cardiothorac Surg 28:617–621PubMedCrossRefGoogle Scholar
  25. 25.
    Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, Gilks CB, Huntsman DG (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4, 444 cases. Breast Cancer Res Treat 107:249–257PubMedCrossRefGoogle Scholar
  26. 26.
    Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23:8959–8967PubMedCrossRefGoogle Scholar
  27. 27.
    Cho H, Hur HW, Kim SW, Kim SH, Kim JH, Kim YT, Lee K (2009) Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunol Immunother 58:15–23PubMedCrossRefGoogle Scholar
  28. 28.
    Sarraf KM, Belcher E, Raevsky E, Nicholson AG, Goldstraw P, Lim E (2009) Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J Thorac Cardiovasc Surg 137:425–428PubMedCrossRefGoogle Scholar
  29. 29.
    Kao SC, Pavlakis N, Harvie R, Vardy JL, Boyer MJ, van Zandwijk N, Clarke SJ (2010) High blood neutrophil-to-lymphocyte ratio is an indicator of poor prognosis in malignant mesothelioma patients undergoing systemic therapy. Clin Cancer Res 16:5805–5813PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson BW, Robinson C, Lake RA (2001) Localised spontaneous regression in mesothelioma–possible immunological mechanism. Lung Cancer 32:197–201PubMedCrossRefGoogle Scholar
  31. 31.
    Sakaguchi S, Toda M, Asano M, Itoh M, Morse SS, Sakaguchi N (1996) T cell-mediated maintenance of natural self-tolerance: its breakdown as a possible cause of various autoimmune diseases. J Autoimmun 9:211–220PubMedCrossRefGoogle Scholar
  32. 32.
    Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772PubMedGoogle Scholar
  33. 33.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  34. 34.
    Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4+ CD25+ regulatory T cells in patients with gastrointestinal malignancies. Cancer 98:1089–1099PubMedCrossRefGoogle Scholar
  35. 35.
    Gao Q, Qiu S-J, Fan J, Zhou J, Wang X-Y, Xiao Y-S, Xu Y, Li Y-W, Tang Z-Y (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593PubMedCrossRefGoogle Scholar
  36. 36.
    Rudge G, Barrett SP, Scott B, van Driel IR (2007) Infiltration of a mesothelioma by IFN-gamma-producing cells and tumor rejection after depletion of regulatory T cells. J Immunol 178:4089–4096PubMedGoogle Scholar
  37. 37.
    Needham DJ, Lee JX, Beilharz MW (2006) Intra-tumoural regulatory T cells: a potential new target in cancer immunotherapy. Biochem Biophys Res Commun 343:684–691PubMedCrossRefGoogle Scholar
  38. 38.
    Anraku M, Tagawa T, Wu L, Yun Z, Keshavjee S, Zhang L, Johnston MR, de Perrot M (2010) Synergistic antitumor effects of regulatory T cell blockade combined with pemetrexed in murine malignant mesothelioma. J Immunol 185:956–966PubMedCrossRefGoogle Scholar
  39. 39.
    van der Most RG, Currie AJ, Mahendran S, Prosser A, Darabi A, Robinson BW, Nowak AK, Lake RA (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58:1219–1228PubMedCrossRefGoogle Scholar
  40. 40.
    van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S, Larma I, Prosser A, Robinson BW, Smyth MJ, Scalzo AA, Degli-Esposti MA, Lake RA (2009) Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One 4:e6982PubMedCrossRefGoogle Scholar
  41. 41.
    Wu L, Yun Z, Tagawa T, Rey-McIntyre K, Anraku M, de Perrot M (2011) Tumor cell repopulation between cycles of chemotherapy is inhibited by regulatory T-cell depletion in a murine mesothelioma model. J Thorac Oncol (Publish Ahead of Print)Google Scholar
  42. 42.
    Jackaman C, Cornwall S, Lew AM, Zhan Y, Robinson BW, Nelson DJ (2009) Local effector failure in mesothelioma is not mediated by CD4+ CD25+ T-regulator cells. Eur Respir J 34:162–175PubMedCrossRefGoogle Scholar
  43. 43.
    Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355PubMedCrossRefGoogle Scholar
  44. 44.
    Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265PubMedCrossRefGoogle Scholar
  45. 45.
    Koukourakis MI, Giatromanolaki A, Kakolyris S, O’Byrne KJ, Apostolikas N, Skarlatos J, Gatter KC, Harris AL (1998) Different patterns of stromal and cancer cell thymidine phosphorylase reactivity in non-small-cell lung cancer: impact on tumour neoangiogenesis and survival. Br J Cancer 77:1696–1703PubMedCrossRefGoogle Scholar
  46. 46.
    Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A (2000) Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 17:445–451PubMedGoogle Scholar
  47. 47.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRefGoogle Scholar
  48. 48.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51PubMedCrossRefGoogle Scholar
  49. 49.
    Salvesen HB, Akslen LA (1999) Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 84:538–543PubMedCrossRefGoogle Scholar
  50. 50.
    Volodko N, Reiner A, Rudas M, Jakesz R (1998) Tumour-associated macrophages in breast cancer and their prognostic correlations. The Breast 7:99–105CrossRefGoogle Scholar
  51. 51.
    Izzi V, Chiurchiu V, D’Aquilio F, Palumbo C, Tresoldi I, Modesti A, Baldini PM (2009) Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages. Int J Oncol 34:543–550PubMedGoogle Scholar
  52. 52.
    Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G, Reckamp K, Dohadwala M, Sharma S, Dubinett SM (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490PubMedGoogle Scholar
  53. 53.
    Sharma S, Yang S-C, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM (2005) Tumor Cyclooxygenase-2/Prostaglandin E2–dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220PubMedCrossRefGoogle Scholar
  54. 54.
    Miselis NR, Wu ZJ, Van Rooijen N, Kane AB (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7:788–799PubMedCrossRefGoogle Scholar
  55. 55.
    Steinman RM (2008) Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29:319–324PubMedCrossRefGoogle Scholar
  56. 56.
    Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426PubMedCrossRefGoogle Scholar
  57. 57.
    Hegmans JP, Hemmes A, Aerts JG, Hoogsteden HC, Lambrecht BN (2005) Immunotherapy of murine malignant mesothelioma using tumor lysate-pulsed dendritic cells. Am J Respir Crit Care Med 171:1168–1177PubMedCrossRefGoogle Scholar
  58. 58.
    Veltman JD, Lambers ME, van Nimwegen M, de Jong S, Hendriks RW, Hoogsteden HC, Aerts JG, Hegmans JP (2010) Low-dose cyclophosphamide synergizes with dendritic cell-based immunotherapy in antitumor activity. J Biomed Biotechnol 2010:798467PubMedCrossRefGoogle Scholar
  59. 59.
    Wada S, Yoshimura K, Hipkiss EL, Harris TJ, Yen H-R, Goldberg MV, Grosso JF, Getnet D, Demarzo AM, Netto GJ, Anders R, Pardoll DM, Drake CG (2009) Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69:4309–4318PubMedCrossRefGoogle Scholar
  60. 60.
    Ho M, Hassan R, Zhang J, Wang QC, Onda M, Bera T, Pastan I (2005) Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin Cancer Res 11:3814–3820PubMedCrossRefGoogle Scholar
  61. 61.
    Johnston FM, Tan MC, Tan BR Jr, Porembka MR, Brunt EM, Linehan DC, Simon PO Jr, Plambeck-Suess S, Eberlein TJ, Hellstrom KE, Hellstrom I, Hawkins WG, Goedegebuure P (2009) Circulating mesothelin protein and cellular antimesothelin immunity in patients with pancreatic cancer. Clin Cancer Res 15:6511–6518PubMedCrossRefGoogle Scholar
  62. 62.
    Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, Hofmann WK, Uharek L, Thiel E, Scheibenbogen C (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113:6541–6548PubMedCrossRefGoogle Scholar
  63. 63.
    May RJ, Dao T, Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, Zhang RH, Maslak P, Scheinberg DA (2007) Peptide epitopes from the Wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 13:4547–4555PubMedCrossRefGoogle Scholar
  64. 64.
    Rezvani K, Brenchley JM, Price DA, Kilical Y, Gostick E, Sewell AK, Li J, Mielke S, Douek DC, Barrett AJ (2005) T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 11:8799–8807PubMedCrossRefGoogle Scholar
  65. 65.
    Hassan R, Ho M (2008) Mesothelin targeted cancer immunotherapy. Eur J Cancer 44:46–53PubMedCrossRefGoogle Scholar
  66. 66.
    Wheatley-Price P, Yang B, Patsios D, Patel D, Ma C, Xu W, Leighl N, Feld R, Cho BCJ, O’Sullivan B, Roberts H, Tsao MS, Tammemagi M, Anraku M, Chen Z, de Perrot M, Liu G (2010) Soluble mesothelin-related peptide and osteopontin as markers of response in malignant mesothelioma. J Clin Oncol 28:3316–3322PubMedCrossRefGoogle Scholar
  67. 67.
    Robinson BWS, Creaney J, Lake R, Nowak A, Musk AW, de Klerk N, Winzell P, Hellstrom KE, Hellstrom I (2003) Mesothelin-family proteins and diagnosis of mesothelioma. Lancet 362:1612–1616PubMedCrossRefGoogle Scholar
  68. 68.
    Hassan R, Williams-Gould J, Steinberg SM, Liewehr DJ, Yokokawa J, Tsang KY, Surawski RJ, Scott T, Camphausen K (2006) Tumor-directed radiation and the immunotoxin SS1P in the treatment of mesothelin-expressing tumor xenografts. Clin Cancer Res 12:4983–4988PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Y, Xiang L, Hassan R, Paik CH, Carrasquillo JA, Jang BS, Le N, Ho M, Pastan I (2006) Synergistic antitumor activity of taxol and immunotoxin SS1P in tumor-bearing mice. Clin Cancer Res 12:4695–4701PubMedCrossRefGoogle Scholar
  70. 70.
    Hassan R, Ebel W, Routhier EL, Patel R, Kline JB, Zhang J, Chao Q, Jacob S, Turchin H, Gibbs L, Phillips MD, Mudali S, Iacobuzio-Donahue C, Jaffee EM, Moreno M, Pastan I, Sass PM, Nicolaides NC, Grasso L (2007) Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun 7:20PubMedGoogle Scholar
  71. 71.
    Sadelain M, Rivière I, Brentjens R (2003) Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 3:35–45PubMedCrossRefGoogle Scholar
  72. 72.
    Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106:3360–3365PubMedCrossRefGoogle Scholar
  73. 73.
    Moon EK, Carpenito C, Sun J, Wang L-CS, Kapoor V, Predina JD, Powell DJ, Riley J, June CH, Albelda SM (2011) Expression of a functional CCR2 receptor enhances tumor localization and eradication by human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17(14):4719–4730Google Scholar
  74. 74.
    Huber JP, David Farrar J (2011) Regulation of effector and memory T-cell functions by type I interferon. Immunology 132:466–474PubMedCrossRefGoogle Scholar
  75. 75.
    Odaka M, Sterman DH, Wiewrodt R, Zhang Y, Kiefer M, Amin KM, Gao G-P, Wilson JM, Barsoum J, Kaiser LR, Albelda SM (2001) Eradication of intraperitoneal and distant tumor by adenovirus-mediated interferon-β Gene therapy is attributable to induction of systemic immunity. Cancer Res 61:6201–6212PubMedGoogle Scholar
  76. 76.
    Kruklitis RJ, Singhal S, Delong P, Kapoor V, Sterman DH, Kaiser LR, Albelda SM (2004) Immuno-gene therapy with interferon-beta before surgical debulking delays recurrence and improves survival in a murine model of malignant mesothelioma. J Thorac Cardiovasc Surg 127:123–130PubMedCrossRefGoogle Scholar
  77. 77.
    Smith KA (1988) Interleukin-2: inception, impact, and implications. Science 240:1169–1176PubMedCrossRefGoogle Scholar
  78. 78.
    Kern DE, Gillis S, Okada M, Henney CS (1981) The role of interleukin-2 (IL-2) in the differentiation of cytotoxic T cells: the effect of monoclonal anti-IL-2 antibody and absorption with IL-2 dependent T cell lines. J Immunol 127:1323–1328PubMedGoogle Scholar
  79. 79.
    Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D, Robinson BW, Nelson DJ (2003) IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 171:5051–5063PubMedGoogle Scholar
  80. 80.
    Jackaman C, Lew AM, Zhan Y, Allan JE, Koloska B, Graham PT, Robinson BW, Nelson DJ (2008) Deliberately provoking local inflammation drives tumors to become their own protective vaccine site. Int Immunol 20:1467–1479PubMedCrossRefGoogle Scholar
  81. 81.
    van Mierlo GJ, den Boer AT, Medema JP, van der Voort EI, Fransen MF, Offringa R, Melief CJ, Toes RE (2002) CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci USA 99:5561–5566PubMedCrossRefGoogle Scholar
  82. 82.
    Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13:4677–4685PubMedCrossRefGoogle Scholar
  83. 83.
    Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Wolf SF, Gately MK (1993) Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 178:1223–1230PubMedCrossRefGoogle Scholar
  84. 84.
    Zou JP, Yamamoto N, Fujii T, Takenaka H, Kobayashi M, Herrmann SH, Wolf SF, Fujiwara H, Hamaoka T (1995) Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-gamma production by anti-tumor T cells. Int Immunol 7:1135–1145PubMedCrossRefGoogle Scholar
  85. 85.
    Caminschi I, Venetsanakos E, Leong CC, Garlepp MJ, Scott B, Robinson BW (1998) Interleukin-12 induces an effective antitumor response in malignant mesothelioma. Am J Respir Cell Mol Biol 19:738–746PubMedGoogle Scholar
  86. 86.
    Caminschi I, Venetsanakos E, Leong CC, Garlepp MJ, Robinson BW, Scott B (1999) Cytokine gene therapy of mesothelioma. Immune and antitumor effects of transfected interleukin-12. Am J Respir Cell Mol Biol 21:347–356PubMedGoogle Scholar
  87. 87.
    Fridlender ZG, Buchlis G, Kapoor V, Cheng G, Sun J, Singhal S, Crisanti MC, Wang LC, Heitjan D, Snyder LA, Albelda SM (2010) CCL2 blockade augments cancer immunotherapy. Cancer Res 70:109–118PubMedCrossRefGoogle Scholar
  88. 88.
    Kim S, Buchlis G, Fridlender ZG, Sun J, Kapoor V, Cheng G, Haas A, Cheung HK, Zhang X, Corbley M, Kaiser LR, Ling L, Albelda SM (2008) Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res 68:10247–10256PubMedCrossRefGoogle Scholar
  89. 89.
    Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-β1 maintains suppressor function and Foxp3 expression in CD4+ CD25+ regulatory T cells. J Exp Med 201:1061–1067PubMedCrossRefGoogle Scholar
  90. 90.
    Thomas DA, Massagué J (2005) TGF-[beta] directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380PubMedCrossRefGoogle Scholar
  91. 91.
    Ahmadzadeh M, Rosenberg SA (2005) TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 174:5215–5223PubMedGoogle Scholar
  92. 92.
    Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161PubMedCrossRefGoogle Scholar
  93. 93.
    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194PubMedCrossRefGoogle Scholar
  94. 94.
    Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191PubMedCrossRefGoogle Scholar
  95. 95.
    Currie AJ, van der Most RG, Broomfield SA, Prosser AC, Tovey MG, Robinson BW (2008) Targeting the effector site with IFN-alphabeta-inducing TLR ligands reactivates tumor-resident CD8 T cell responses to eradicate established solid tumors. J Immunol 180:1535–1544PubMedGoogle Scholar
  96. 96.
    Broomfield SA, van der Most RG, Prosser AC, Mahendran S, Tovey MG, Smyth MJ, Robinson BW, Currie AJ (2009) Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J Immunol 182:5217–5224PubMedCrossRefGoogle Scholar
  97. 97.
    Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618PubMedCrossRefGoogle Scholar
  98. 98.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedCrossRefGoogle Scholar
  99. 99.
    Shrikant P, Khoruts A, Mescher MF (1999) CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11:483–493PubMedCrossRefGoogle Scholar
  100. 100.
    van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366PubMedCrossRefGoogle Scholar
  101. 101.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRefGoogle Scholar
  102. 102.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr., Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526Google Scholar
  103. 103.
    Adusumilli PS, Eisenberg DP, Stiles BM, Chung S, Chan M-K, Rusch VW, Fong Y (2006) Intraoperative localization of lymph node metastases with a replication-competent herpes simplex virus. J Thorac Cardiovasc Surg 132:1179.e1–1188.e1CrossRefGoogle Scholar
  104. 104.
    Adusumilli PS, Stiles BM, Chan M-K, Mullerad M, Eisenberg DP, Ben-Porat L, Huq R, Rusch VW, Fong Y (2006) Imaging and therapy of malignant pleural mesothelioma using replication-competent herpes simplex viruses. J Gene Med 8:603–615PubMedCrossRefGoogle Scholar
  105. 105.
    Adusumilli PS, Stiles BM, Chan MK, Eisenberg DP, Yu Z, Stanziale SF, Huq R, Wong RJ, Rusch VW, Fong Y (2006) Real-time diagnostic imaging of tumors and metastases by use of a replication-competent herpes vector to facilitate minimally invasive oncological surgery. FASEB J 20:726–728PubMedGoogle Scholar
  106. 106.
    Sterman DH, Recio A, Carroll RG, Gillespie CT, Haas A, Vachani A, Kapoor V, Sun J, Hodinka R, Brown JL, Corbley MJ, Parr M, Ho M, Pastan I, Machuzak M, Benedict W, Zhang XQ, Lord EM, Litzky LA, Heitjan DF, June CH, Kaiser LR, Vonderheide RH, Albelda SM, Kanther M (2007) A phase I clinical trial of single-dose intrapleural IFN-beta gene transfer for malignant pleural mesothelioma and metastatic pleural effusions: high rate of antitumor immune responses. Clin Cancer Res 13:4456–4466PubMedCrossRefGoogle Scholar
  107. 107.
    Sterman DH, Recio A, Haas AR, Vachani A, Katz SI, Gillespie CT, Cheng G, Sun J, Moon E, Pereira L, Wang X, Heitjan DF, Litzky L, June CH, Vonderheide RH, Carroll RG, Albelda SM (2010) A phase I trial of repeated intrapleural adenoviral-mediated interferon-beta gene transfer for mesothelioma and metastatic pleural effusions. Mol Ther 18:852–860PubMedCrossRefGoogle Scholar
  108. 108.
    Boutin C, Nussbaum E, Monnet I, Bignon J, Vanderschueren R, Guerin JC, Menard O, Mignot P, Dabouis G, Douillard JY (1994) Intrapleural treatment with recombinant gamma-interferon in early stage malignant pleural mesothelioma. Cancer 74:2460–2467PubMedCrossRefGoogle Scholar
  109. 109.
    Goey SH, Eggermont AM, Punt CJ, Slingerland R, Gratama JW, Oosterom R, Oskam R, Bolhuis RL, Stoter G (1995) Intrapleural administration of interleukin 2 in pleural mesothelioma: a phase I-II study. Br J Cancer 72:1283–1288PubMedCrossRefGoogle Scholar
  110. 110.
    Astoul P, Picat-Joossen D, Viallat JR, Boutin C (1998) Intrapleural administration of interleukin-2 for the treatment of patients with malignant pleural mesothelioma: a phase II study. Cancer 83:2099–2104PubMedCrossRefGoogle Scholar
  111. 111.
    Castagneto B, Zai S, Mutti L, Lazzaro A, Ridolfi R, Piccolini E, Ardizzoni A, Fumagalli L, Valsuani G, Botta M (2001) Palliative and therapeutic activity of IL-2 immunotherapy in unresectable malignant pleural mesothelioma with pleural effusion: results of a phase II study on 31 consecutive patients. Lung Cancer 31:303–310PubMedCrossRefGoogle Scholar
  112. 112.
    Lucchi M, Chella A, Melfi F, Dini P, Tibaldi C, Fontanini G, Mussi A (2007) Four-modality therapy in malignant pleural mesothelioma: a phase II study. J Thorac Oncol 2:237–242PubMedCrossRefGoogle Scholar
  113. 113.
    Lucchi M, Chella A, Melfi F, Dini P, Ambrogi M, Fino L, Fontanini G, Mussi A (2007) A phase II study of intrapleural immuno-chemotherapy, pleurectomy/decortication, radiotherapy, systemic chemotherapy and long-term sub-cutaneous IL-2 in stage II-III malignant pleural mesothelioma. Eur J Cardiothorac Surg 31:529–533 discussion 533-4PubMedCrossRefGoogle Scholar
  114. 114.
    Bretti S, Berruti A, Dogliotti L, Castagneto B, Bertulli R, Spadaro P, Toscano G, Astorre P, Verusio C, Lionetto R, Bruzzi P, Santoro A (1998) Combined epirubicin and interleukin-2 regimen in the treatment of malignant mesothelioma: a multicenter phase II study of the Italian group on rare tumors. Tumori 84:558–561PubMedGoogle Scholar
  115. 115.
    Mulatero CW, Penson RT, Papamichael D, Gower NH, Evans M, Rudd RM (2001) A phase II study of combined intravenous and subcutaneous interleukin-2 in malignant pleural mesothelioma. Lung Cancer 31:67–72PubMedCrossRefGoogle Scholar
  116. 116.
    Ali G, Boldrini L, Lucchi M, Picchi A, Dell’Omodarme M, Prati MC, Mussi A, Corsi V, Fontanini G (2009) Treatment with interleukin-2 in malignant pleural mesothelioma: immunological and angiogenetic assessment and prognostic impact. Br J Cancer 101:1869–1875PubMedCrossRefGoogle Scholar
  117. 117.
    Ali G, Boldrini L, Lucchi M, Mussi A, Corsi V, Fontanini G (2009) Tryptase mast cells in malignant pleural mesothelioma as an independent favorable prognostic factor. J Thorac Oncol 4:348–354PubMedCrossRefGoogle Scholar
  118. 118.
    Hegmans JP, Veltman JD, Lambers ME, de Vries IJ, Figdor CG, Hendriks RW, Hoogsteden HC, Lambrecht BN, Aerts JG (2010) Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am J Respir Crit Care Med 181:1383–1390PubMedCrossRefGoogle Scholar
  119. 119.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337PubMedCrossRefGoogle Scholar
  120. 120.
    Xue SA, Gao L, Thomas S, Hart DP, Xue JZ, Gillmore R, Voss RH, Morris E, Stauss HJ (2010) Development of a Wilms’ tumor antigen-specific T-cell receptor for clinical trials: engineered patient’s T cells can eliminate autologous leukemia blasts in NOD/SCID mice. Haematologica 95:126–134PubMedCrossRefGoogle Scholar
  121. 121.
    Amin KM, Litzky LA, Smythe WR, Mooney AM, Morris JM, Mews DJ, Pass HI, Kari C, Rodeck U, Rauscher FJ III et al (1995) Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 146:344–356PubMedGoogle Scholar
  122. 122.
    Oates J, Edwards C (2000) HBME-1, MOC-31, WT1 and calretinin: an assessment of recently described markers for mesothelioma and adenocarcinoma. Histopathology 36:341–347PubMedCrossRefGoogle Scholar
  123. 123.
    Krug LM, Dao T, Brown AB, Maslak P, Travis W, Bekele S, Korontsvit T, Zakhaleva V, Wolchok J, Yuan J, Li H, Tyson L, Scheinberg DA (2010) WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunol Immunother 59:1467–1479PubMedCrossRefGoogle Scholar
  124. 124.
    Hassan R, Bullock S, Premkumar A, Kreitman RJ, Kindler H, Willingham MC, Pastan I (2007) Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. Infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 13:5144–5149PubMedCrossRefGoogle Scholar
  125. 125.
    Kreitman RJ, Hassan R, FitzGerald DJ, Pastan I (2009) Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res 15:5274–5279PubMedCrossRefGoogle Scholar
  126. 126.
    Hassan R, Cohen SJ, Phillips M, Pastan I, Sharon E, Kelly RJ, Schweizer C, Weil S, Laheru D (2010) Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res 16:6132–6138PubMedCrossRefGoogle Scholar
  127. 127.
    Pages F, Galon J, Fridman WH (2008) The essential role of the in situ immune reaction in human colorectal cancer. J Leukoc Biol 84:981–987PubMedCrossRefGoogle Scholar
  128. 128.
    Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27:5944–5951PubMedCrossRefGoogle Scholar
  129. 129.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  130. 130.
    Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310PubMedCrossRefGoogle Scholar
  131. 131.
    Broomfield SA et al (2005) Partial, but not complete, tumor-debulking surgery promotes protective antitumor memory when combined with chemotherapy and adjuvant immunotherapy. Cancer Res 65(17):7580–7584Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Adam J. Bograd
    • 1
    • 2
  • Kei Suzuki
    • 1
  • Eva Vertes
    • 1
    • 2
  • Christos Colovos
    • 1
    • 2
  • Eduardo A. Morales
    • 1
  • Michel Sadelain
    • 2
  • Prasad S. Adusumilli
    • 1
    • 2
  1. 1.Division of Thoracic SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Center for Cell EngineeringMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations