Cancer Immunology, Immunotherapy

, Volume 61, Issue 2, pp 203–214 | Cite as

Expression of anti-HVEM single-chain antibody on tumor cells induces tumor-specific immunity with long-term memory

  • Jang-June Park
  • Sudarshan Anand
  • Yuming Zhao
  • Yumiko Matsumura
  • Yukimi Sakoda
  • Atsuo Kuramasu
  • Scott E. Strome
  • Lieping Chen
  • Koji TamadaEmail author
Original article


Genetic engineering of tumor cells to express immune-stimulatory molecules, including cytokines and co-stimulatory ligands, is a promising approach to generate highly efficient cancer vaccines. The co-signaling molecule, LIGHT, is particularly well suited for use in vaccine development as it delivers a potent co-stimulatory signal through the Herpes virus entry mediator (HVEM) receptor on T cells and facilitates tumor-specific T cell immunity. However, because LIGHT binds two additional receptors, lymphotoxin β receptor and Decoy receptor 3, there are significant concerns that tumor-associated LIGHT results in both unexpected adverse events and interference with the ability of the vaccine to enhance antitumor immunity. In order to overcome these problems, we generated tumor cells expressing the single-chain variable fragment (scFv) of anti-HVEM agonistic mAb on the cell surface. Tumor cells expressing anti-HVEM scFv induce a potent proliferation and cytokine production of co-cultured T cells. Inoculation of anti-HVEM scFv-expressing tumor results in a spontaneous tumor regression in CD4+ and CD8+ T cell-dependent fashion, associated with the induction of tumor-specific long-term memory. Stimulation of HVEM and 4-1BB co-stimulatory signals by anti-HVEM scFv-expressing tumor vaccine combined with anti-4-1BB mAb shows synergistic effects which achieve regression of pre-established tumor and T cell memory specific to parental tumor. Taken in concert, our data suggest that genetic engineering of tumor cells to selectively potentiate the HVEM signaling pathway is a promising antitumor vaccine therapy.


HVEM Co-stimulation Tumor immunity scFv T cell memory 



We would like to thank Yingjia Liu and Amanda Miller for technical help in some experiments. This work was supported by ACGT Young Investigator Award and NIH grant HL088954 to K. T.

Conflict of interest

S.E.S. receives royalties through the Mayo Clinic College of Medicine for intellectual property related to B7-H1 and 4-1BB. He is also a co-founder and major stockholder in Gliknik Inc. a biotechnology company. The other authors have no financial conflict of interest.

Supplementary material

262_2011_1101_MOESM1_ESM.tif (783 kb)
Supplementary material 1 (TIFF 782 kb)
262_2011_1101_MOESM2_ESM.tif (873 kb)
Supplementary material 2 (TIFF 872 kb)
262_2011_1101_MOESM3_ESM.tif (773 kb)
Supplementary material 3 (TIFF 773 kb)


  1. 1.
    Kwon BS, Tan KB, Ni J, Oh KO, Lee ZH, Kim KK, Kim YJ, Wang S, Gentz R, Yu GL, Harrop J, Lyn SD, Silverman C, Porter TG, Truneh A, Young PR (1997) A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem 272:14272–14276PubMedCrossRefGoogle Scholar
  2. 2.
    Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427–436PubMedCrossRefGoogle Scholar
  3. 3.
    Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL, Ruben S, Murphy M, Eisenberg RJ, Cohen GH, Spear PG, Ware CF (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8:21–30PubMedCrossRefGoogle Scholar
  4. 4.
    Gonzalez LC, Loyet KM, Calemine-Fenaux J, Chauhan V, Wranik B, Ouyang W, Eaton DL (2005) A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci USA 102:1116–1121PubMedCrossRefGoogle Scholar
  5. 5.
    Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K, Scheu S, Pfeffer K, Ware CF, Murphy TL, Murphy KM (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 6:90–98PubMedCrossRefGoogle Scholar
  6. 6.
    Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ (2008) CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol 9:176–185PubMedCrossRefGoogle Scholar
  7. 7.
    Cai G, Freeman GJ (2009) The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 229:244–258PubMedCrossRefGoogle Scholar
  8. 8.
    Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68PubMedCrossRefGoogle Scholar
  9. 9.
    Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, Boone T, Hsu H, Fu YX, Nagata S, Ni J, Chen L (2000) Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med 6:283–289PubMedCrossRefGoogle Scholar
  10. 10.
    Tamada K, Shimozaki K, Chapoval AI, Zhai Y, Su J, Chen SF, Hsieh SL, Nagata S, Ni J, Chen L (2000) LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol 164:4105–4110PubMedGoogle Scholar
  11. 11.
    Xu Y, Flies AS, Flies DB, Zhu G, Anand S, Flies SJ, Xu H, Anders RA, Hancock WW, Chen L, Tamada K (2007) Selective targeting of the LIGHT-HVEM costimulatory system for the treatment of graft-versus-host disease. Blood 109:4097–4104PubMedCrossRefGoogle Scholar
  12. 12.
    Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149PubMedCrossRefGoogle Scholar
  13. 13.
    Yu P, Lee Y, Wang Y, Liu X, Auh S, Gajewski TF, Schreiber H, You Z, Kaynor C, Wang X, Fu YX (2007) Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases. J Immunol 179:1960–1968PubMedGoogle Scholar
  14. 14.
    Kanodia S, Da Silva DM, Karamanukyan T, Bogaert L, Fu YX, Kast WM (2010) Expression of LIGHT/TNFSF14 combined with vaccination against human papillomavirus Type 16 E7 induces significant tumor regression. Cancer Res 70:3955–3964PubMedCrossRefGoogle Scholar
  15. 15.
    Morel Y, Schiano de Colella JM, Harrop J, Deen KC, Holmes SD, Wattam TA, Khandekar SS, Truneh A, Sweet RW, Gastaut JA, Olive D, Costello RT (2000) Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol 165:4397–4404PubMedGoogle Scholar
  16. 16.
    Yu P, Fu YX (2008) Targeting tumors with LIGHT to generate metastasis-clearing immunity. Cytokine Growth Factor Rev 19:285–294PubMedCrossRefGoogle Scholar
  17. 17.
    Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT, Godowski PJ, Wood WI, Gurney AL, Hillan KJ, Cohen RL, Goddard AD, Botstein D, Ashkenazi A (1998) Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396:699–703PubMedCrossRefGoogle Scholar
  18. 18.
    Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS (1999) A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem 274:13733–13736PubMedCrossRefGoogle Scholar
  19. 19.
    Lin WW, Hsieh SL (2011) Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol 81:838–847PubMedCrossRefGoogle Scholar
  20. 20.
    McCarthy DD, Summers-Deluca L, Vu F, Chiu S, Gao Y, Gommerman JL (2006) The lymphotoxin pathway: beyond lymph node development. Immunol Res 35:41–54PubMedCrossRefGoogle Scholar
  21. 21.
    Zhai Y, Guo R, Hsu TL, Yu GL, Ni J, Kwon BS, Jiang GW, Lu J, Tan J, Ugustus M, Carter K, Rojas L, Zhu F, Lincoln C, Endress G, Xing L, Wang S, Oh KO, Gentz R, Ruben S, Lippman ME, Hsieh SL, Yang D (1998) LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest 102:1142–1151PubMedCrossRefGoogle Scholar
  22. 22.
    Anand S, Wang P, Yoshimura K, Choi IH, Hilliard A, Chen YH, Wang CR, Schulick R, Flies AS, Flies DB, Zhu G, Xu Y, Pardoll DM, Chen L, Tamada K (2006) Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis. J Clin Invest 116:1045–1051PubMedCrossRefGoogle Scholar
  23. 23.
    Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien PA, Thimme R, Blum H, Nedospasov SA, Zatloukal K, Ramzan M, Ciesek S, Pietschmann T, Marche PN, Karin M, Kopf M, Browning JL, Aguzzi A, Heikenwalder M (2009) A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16:295–308PubMedCrossRefGoogle Scholar
  24. 24.
    Lo JC, Wang Y, Tumanov AV, Bamji M, Yao Z, Reardon CA, Getz GS, Fu YX (2007) Lymphotoxin beta receptor-dependent control of lipid homeostasis. Science 316:285–288PubMedCrossRefGoogle Scholar
  25. 25.
    Sarma S, Guo Y, Guilloux Y, Lee C, Bai XF, Liu Y (1999) Cytotoxic T lymphocytes to an unmutated tumor rejection antigen P1A: normal development but restrained effector function in vivo. J Exp Med 189:811–820PubMedCrossRefGoogle Scholar
  26. 26.
    Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L (2002) Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 109:651–659PubMedGoogle Scholar
  27. 27.
    Gilliland LK, Norris NA, Marquardt H, Tsu TT, Hayden MS, Neubauer MG, Yelton DE, Mittler RS, Ledbetter JA (1996) Rapid and reliable cloning of antibody variable regions and generation of recombinant single chain antibody fragments. Tissue Antigens 47:1–20PubMedCrossRefGoogle Scholar
  28. 28.
    Mallender WD, Voss EW Jr (1995) Primary structures of three Armenian hamster monoclonal antibodies specific for idiotopes and metatopes of the monoclonal anti-fluorescein antibody 4-4-20. Mol Immunol 32:1093–1103PubMedCrossRefGoogle Scholar
  29. 29.
    Pasero C, Barbarat B, Just-Landi S, Bernard A, Aurran-Schleinitz T, Rey J, Eldering E, Truneh A, Costello RT, Olive D (2009) A role for HVEM, but not lymphotoxin-beta receptor, in LIGHT-induced tumor cell death and chemokine production. Eur J Immunol 39:2502–2514PubMedCrossRefGoogle Scholar
  30. 30.
    Schwarz BT, Wang F, Shen L, Clayburgh DR, Su L, Wang Y, Fu YX, Turner JR (2007) LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology 132:2383–2394PubMedCrossRefGoogle Scholar
  31. 31.
    Grewal IS, Flavell RA (1996) The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 153:85–106PubMedCrossRefGoogle Scholar
  32. 32.
    Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M, Ohta A (1999) Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190:617–627PubMedCrossRefGoogle Scholar
  33. 33.
    Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, Restifo NP, Allison JP (2010) Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207:637–650PubMedCrossRefGoogle Scholar
  34. 34.
    Xie Y, Akpinarli A, Maris C, Hipkiss EL, Lane M, Kwon EK, Muranski P, Restifo NP, Antony PA (2010) Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 207:651–667PubMedCrossRefGoogle Scholar
  35. 35.
    Soroosh P, Doherty TA, So T, Mehta AK, Khorram N, Norris PS, Scheu S, Pfeffer K, Ware C, Croft M (2011) Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations. J Exp Med 208:797–809PubMedCrossRefGoogle Scholar
  36. 36.
    Fan Z, Yu P, Wang Y, Fu ML, Liu W, Sun Y, Fu YX (2006) NK-cell activation by LIGHT triggers tumor-specific CD8+ T-cell immunity to reject established tumors. Blood 107:1342–1351PubMedCrossRefGoogle Scholar
  37. 37.
    Morel Y, Truneh A, Sweet RW, Olive D, Costello RT (2001) The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. J Immunol 167:2479–2486PubMedGoogle Scholar
  38. 38.
    Heo SK, Ju SA, Lee SC, Park SM, Choe SY, Kwon B, Kwon BS, Kim BS (2006) LIGHT enhances the bactericidal activity of human monocytes and neutrophils via HVEM. J Leukoc Biol 79:330–338PubMedCrossRefGoogle Scholar
  39. 39.
    Zhu Y, Zhu G, Luo L, Flies AS, Chen L (2007) CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood 109:4882–4889PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jang-June Park
    • 1
  • Sudarshan Anand
    • 2
  • Yuming Zhao
    • 1
  • Yumiko Matsumura
    • 1
  • Yukimi Sakoda
    • 1
  • Atsuo Kuramasu
    • 3
  • Scott E. Strome
    • 1
    • 4
  • Lieping Chen
    • 5
  • Koji Tamada
    • 1
    • 3
    • 4
    Email author
  1. 1.Marlene and Stewart Greenebaum Cancer CenterUniversity of Maryland BaltimoreBaltimoreUSA
  2. 2.Department of Pathology and Moores UCSD Cancer CenterUniversity of CaliforniaSan DiegoUSA
  3. 3.Yamaguchi University Graduate School of MedicineUbeJapan
  4. 4.Department of Otorhinolaryngology-Head and Neck SurgeryUniversity of Maryland School of MedicineBaltimoreUSA
  5. 5.Department of ImmunologyYale University School of MedicineNew HavenUSA

Personalised recommendations