Cancer Immunology, Immunotherapy

, Volume 60, Issue 12, pp 1789–1800 | Cite as

Ab-IL2 fusion proteins mediate NK cell immune synapse formation by polarizing CD25 to the target cell-effector cell interface

  • Jennifer A. A. Gubbels
  • Brian Gadbaw
  • Ilia N. Buhtoiarov
  • Sachi Horibata
  • Arvinder K. Kapur
  • Dhara Patel
  • Jacquelyn A. Hank
  • Stephen D. Gillies
  • Paul M. Sondel
  • Manish S. Patankar
  • Joseph Connor
Original article


The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM+ (ovarian) and GD2+ (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells’ IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50–200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.


Immunocytokines Natural killer Cancer Immunotherapy Immune synapse 



Funding for this research was provided by grants from the Department of Defense (#W81XWH-04-1-0102), Ovarian Cancer Research Fund (UW/UWM.05), start-up funds from the Department of Obstetrics and Gynecology to MSP, a charitable donation from Jean McKenzie to JC and MSP, a T32 training grant to JAAG, and by U10CA98543 COG Group Chair Grant, and R01-CA-32685-25, P30-CA14520, CA87025, CA81403, RR03186, and grants from the Midwest Athletes for Childhood Cancer Fund, The Crawdaddy Foundation, The St. Baldrick’s Foundation, The Evan Dunbar Foundation and Abbie’s Fund to PMS. We are deeply grateful to Kathy Schell for her advice and help and acknowledge the support provided by the University of Wisconsin Comprehensive Cancer Centers Flow Cytometry facility which is supported by a core grant (CA14520) from the National Institutes of Health, to Lance Rodenkirk for help with confocal microscopy and image analysis, and to Lori Scardino for help with the schematic figure.

Supplementary material

262_2011_1072_MOESM1_ESM.ppt (302 kb)
Supplemental File 1. This figure shows the schematic relationships of GD2 distribution on M21 tumor cells, IL2R on NKL cells and the localization of FITC-conjugated hu14.18-IL2 to these M21 and NKL cells, when cultured alone, or when synapses are formed via the IC, based on the actual photomicrographs shown in Figs. 6 and 7 (PPT 301 kb)


  1. 1.
    Richards JM (1989) Therapeutic uses of interleukin-2 and lymphokine-activated killer (LAK) cells. Blood Rev 3:110–119PubMedCrossRefGoogle Scholar
  2. 2.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  3. 3.
    Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116PubMedCrossRefGoogle Scholar
  4. 4.
    Bubenik J, Indrova M, Perlmann P, Berzins K, Mach O, Kraml J, Toulcova A (1985) Tumour inhibitory effects of TCGF/IL-2/-containing preparations. Cancer Immunol Immunother 19:57–61PubMedCrossRefGoogle Scholar
  5. 5.
    Bubenik J, Perlmann P, Indrova M, Simova J, Jandlova T, Neuwirt J (1983) Growth inhibition of an MC-induced mouse sarcoma by TCGF (IL 2)-containing preparations. Preliminary report. Cancer Immunol Immunother 14:205–206PubMedCrossRefGoogle Scholar
  6. 6.
    Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897PubMedCrossRefGoogle Scholar
  7. 7.
    Lotze MT, Matory YL, Rayner AA, Ettinghausen SE, Vetto JT, Seipp CA, Rosenberg SA (1986) Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer 58:2764–2772PubMedCrossRefGoogle Scholar
  8. 8.
    Lode HN, Xiang R, Becker JC, Gillies SD, Reisfeld RA (1998) Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol Ther 80:277–292PubMedCrossRefGoogle Scholar
  9. 9.
    Reisfeld RA, Becker JC, Gillies SD (1997) Immunocytokines: a new approach to immunotherapy of melanoma. Melanoma Res 7(Suppl 2):S99–S106Google Scholar
  10. 10.
    Connor JP, Felder M, Hank J, Harter J, Gan J, Gillies SD, Sondel P (2004) Ex vivo evaluation of anti-EpCAM immunocytokine huKS-IL2 in ovarian cancer. J Immunother 27:211–219PubMedCrossRefGoogle Scholar
  11. 11.
    Neal ZC, Yang JC, Rakhmilevich AL, Buhtoiarov IN, Lum HE, Imboden M, Hank JA, Lode HN, Reisfeld RA, Gillies SD, Sondel PM (2004) Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin Cancer Res 10:4839–4847PubMedCrossRefGoogle Scholar
  12. 12.
    Osenga KL, Hank JA, Albertini MR, Gan J, Sternberg AG, Eickhoff J, Seeger RC, Matthay KK, Reynolds CP, Twist C, Krailo M, Adamson PC, Reisfeld RA, Gillies SD, Sondel PM (2006) A phase I clinical trial of the hu14.18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the Children’s Oncology Group. Clin Cancer Res 12:1750–1759PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson EE, Lum HD, Rakhmilevich AL, Schmidt BE, Furlong M, Buhtoiarov IN, Hank JA, Raubitschek A, Colcher D, Reisfeld RA, Gillies SD, Sondel PM (2008) Intratumoral immunocytokine treatment results in enhanced antitumor effects. Cancer Immunol Immunother 57:1891–1902PubMedCrossRefGoogle Scholar
  14. 14.
    Wagner K, Schulz P, Scholz A, Wiedenmann B, Menrad A (2008) The targeted immunocytokine L19-IL2 efficiently inhibits the growth of orthotopic pancreatic cancer. Clin Cancer Res 14:4951–4960PubMedCrossRefGoogle Scholar
  15. 15.
    Schliemann C, Palumbo A, Zuberbuhler K, Villa A, Kaspar M, Trachsel E, Klapper W, Menssen HD, Neri D (2009) Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood 113:2275–2283PubMedCrossRefGoogle Scholar
  16. 16.
    Wong JY, Chu DZ, Williams LE, Liu A, Zhan J, Yamauchi DM, Wilczynski S, Wu AM, Yazaki PJ, Shively JE, Leong L, Raubitschek AA (2006) A phase I trial of (90)Y-DOTA-anti-CEA chimeric T84.66 (cT84.66) radioimmunotherapy in patients with metastatic CEA-producing malignancies. Cancer Biother Radiopharm 21:88–100PubMedCrossRefGoogle Scholar
  17. 17.
    Wong JYC, Chu DZ, Yamauchi DM, Williams LE, Liu A, Wilczynski S, Wu AM, Shively JE, Doroshow JH, Raubitschek AA (2000) A phase I radioimmunotherapy trial evaluating 90yttrium-labeled anti-carcinoembryonic antigen (CEA) chimeric T84.66 in patients with metastatic CEA-producing malignancies. Clin Cancer Res 6:3855–3863PubMedGoogle Scholar
  18. 18.
    Lyu MA, Kurzrock R, Rosenblum MG (2008) The immunocytokine scFv23/TNF targeting HER-2/neu induces synergistic cytotoxic effects with 5-fluorouracil in TNF-resistant pancreatic cancer cell lines. Biochem Pharmacol 75:836–846PubMedCrossRefGoogle Scholar
  19. 19.
    Gillies SD, Reilly EB, Lo KM, Reisfeld RA (1992) Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc Natl Acad Sci USA 89:1428–1432PubMedCrossRefGoogle Scholar
  20. 20.
    Xiang R, Lode HN, Dolman CS, Dreier T, Varki NM, Qian X, Lo KM, Lan Y, Super M, Gillies SD, Reisfeld RA (1997) Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res 57:4948–4955PubMedGoogle Scholar
  21. 21.
    Ko YJ, Bubley GJ, Weber R, Redfern C, Gold DP, Finke L, Kovar A, Dahl T, Gillies SD (2004) Safety, pharmacokinetics, and biological pharmacodynamics of the immunocytokine EMD 273066 (huKS-IL2): results of a phase I trial in patients with prostate cancer. J Immunother 27:232–239PubMedCrossRefGoogle Scholar
  22. 22.
    Shusterman S, London W, Gillies SD, Hank JA, Voss S, Seeger RC, Reynolds CP, Kimball J, Albertini MA, Wagner B, Gan J, Eickhoff J, DeSantes KD, Cohn SL, Hecht T, Gadbaw B, Reisfeld RA, Maris JM, Sondel PM (2010) Anti-tumor activity of hu14.18-IL2 in relapsed/refractory neuroblastoma patients: a Children’s Oncology Group (COG) phase II study. J Clin Oncol 28:4969–4975PubMedCrossRefGoogle Scholar
  23. 23.
    Yu AL, Gilman A, Ozkaynak MF, London WB, Kreissman S, Chen H, Smith M, Anderson B, Villablanca J, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM (2010) Chimeric Anti-GD2 antibody with GM-CSF, IL2 and 13-cis retinoic acid for high-risk neuroblastoma: a children’s oncology group (COG) phase 3 study. N Engl J Med 363:1324–1334Google Scholar
  24. 24.
    Becker JC, Pancook JD, Gillies SD, Furukawa K, Reisfeld RA (1996) T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J Exp Med 183:2361–2366PubMedCrossRefGoogle Scholar
  25. 25.
    Pancook JD, Becker JC, Gillies SD, Reisfeld RA (1996) Eradication of established hepatic human neuroblastoma metastases in mice with severe combined immunodeficiency by antibody-targeted interleukin-2. Cancer Immunol Immunother 42:88–92PubMedCrossRefGoogle Scholar
  26. 26.
    Becker JC, Pancook JD, Gillies SD, Mendelsohn J, Reisfeld RA (1996) Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc Natl Acad Sci USA 93:2702–2707PubMedCrossRefGoogle Scholar
  27. 27.
    Gillies SD, Lan Y, Lo KM, Super M, Wesolowski J (1999) Improving the efficacy of antibody-interleukin 2 fusion proteins by reducing their interaction with Fc receptors. Cancer Res 59:2159–2166PubMedGoogle Scholar
  28. 28.
    Neal ZC, Imboden M, Rakhmilevich AL, Kim KM, Hank JA, Surfus J, Dixon JR, Lode HN, Reisfeld RA, Gillies SD, Sondel PM (2004) NXS2 murine neuroblastomas express increased levels of MHC class I antigens upon recurrence following NK-dependent immunotherapy. Cancer Immunol Immunother 53:41–52PubMedCrossRefGoogle Scholar
  29. 29.
    Gillies SD, Lan Y, Williams S, Carr F, Forman S, Raubitschek A, Lo KM (2005) An anti-CD20-IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma. Blood 105:3972–3978PubMedCrossRefGoogle Scholar
  30. 30.
    Lustgarten J, Marks J, Sherman LA (1999) Redirecting effector T cells through their IL-2 receptors. J Immunol 162:359–365PubMedGoogle Scholar
  31. 31.
    Buhtoiarov IN, Neal Z, Jan J, Buhtoiarova TN, Hank JA, Yamane B, Rakhmilevich AL, Patankar MS, Gubbels JAA, Reisfeld RA, Gillies SD, Sondel PM (2010) Differential internalization of hu14.18-IL2 by human NK cells and human tumor cells: influence on conjugate formation, cytotoxicity and infiltration into tumors. J Leukoc Biol 89:625–638Google Scholar
  32. 32.
    Belisle JA, Gubbels JA, Raphael CA, Migneault M, Rancourt C, Connor JP, Patankar MS (2007) Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125). Immunology 122:418–429PubMedCrossRefGoogle Scholar
  33. 33.
    Davis DM, Chiu I, Fassett M, Cohen GB, Mandelboim O, Strominger JL (1999) The human natural killer cell immune synapse. Proc Natl Acad Sci USA 96:15062–15067PubMedCrossRefGoogle Scholar
  34. 34.
    Joshi T, Ganesan LP, Cheney C, Ostrowski MC, Muthusamy N, Byrd JC, Tridandapani S (2009) The PtdIns 3-kinase/Akt pathway regulates macrophage-mediated ADCC against B cell lymphoma. PLoS ONE 4:e4208PubMedCrossRefGoogle Scholar
  35. 35.
    Gubbels JA, Belisle J, Onda M, Rancourt C, Migneault M, Ho M, Bera TK, Connor J, Sathyanarayana BK, Lee B, Pastan I, Patankar MS (2006) Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 5:50PubMedCrossRefGoogle Scholar
  36. 36.
    Gubbels JA, Felder M, Horibata S, Belisle JA, Kapur A, Holden H, Petrie S, Migneault M, Rancourt C, Connor JP, Patankar MS (2010) MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol Cancer 9:11PubMedCrossRefGoogle Scholar
  37. 37.
    Zheng X, Wang Y, Wei H, Sun R, Tian Z (2009) LFA-1 and CD2 synergize for the ERK1/2 activation in the NK cell immunological synapse. J Biol Chem 284:21280–21287Google Scholar
  38. 38.
    Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J (1996) Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 24:406–415PubMedGoogle Scholar
  39. 39.
    Lanier LL, Ruitenberg JJ, Phillips JH (1988) Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 141:3478–3485PubMedGoogle Scholar
  40. 40.
    Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502PubMedCrossRefGoogle Scholar
  41. 41.
    Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943PubMedCrossRefGoogle Scholar
  42. 42.
    Rosenstein M, Yron I, Kaufmann Y, Rosenberg SA (1984) Lymphokine-activated killer cells: lysis of fresh syngeneic natural killer-resistant murine tumor cells by lymphocytes cultured in interleukin 2. Cancer Res 44:1946–1953PubMedGoogle Scholar
  43. 43.
    Hatakeyama M, Minamoto S, Taniguchi T (1986) Intracytoplasmic phosphorylation sites of Tac antigen (p55) are not essential for the conformation, function, and regulation of the human interleukin 2 receptor. Proc Natl Acad Sci USA 83:9650–9654PubMedCrossRefGoogle Scholar
  44. 44.
    Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC (2005) The structure of interleukin-2 complexed with its alpha receptor. Science 308:1477–1480PubMedCrossRefGoogle Scholar
  45. 45.
    Wang X, Rickert M, Garcia KC (2005) Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310:1159–1163PubMedCrossRefGoogle Scholar
  46. 46.
    Nelson BH, Willerford DM (1998) Biology of the interleukin-2 receptor. Adv Immunol 70:1–81PubMedCrossRefGoogle Scholar
  47. 47.
    Greene WC, Leonard WJ (1987) Human interleukin 2 receptor (Tac antigen). Methods Enzymol 150:682–700PubMedCrossRefGoogle Scholar
  48. 48.
    Greene WC, Leonard WJ (1986) The human interleukin-2 receptor. Annu Rev Immunol 4:69–95PubMedCrossRefGoogle Scholar
  49. 49.
    Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91:1706–1715PubMedGoogle Scholar
  50. 50.
    Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL (2002) Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc 124:14922–14933PubMedCrossRefGoogle Scholar
  51. 51.
    Orange JS, Harris KE, Andzelm MM, Valter MM, Geha RS, Strominger JL (2003) The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc Natl Acad Sci USA 100:14151–14156PubMedCrossRefGoogle Scholar
  52. 52.
    van Spriel AB, Leusen JH, van Egmond M, Dijkman HB, Assmann KJ, Mayadas TN, van de Winkel JG (2001) Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97:2478–2486PubMedCrossRefGoogle Scholar
  53. 53.
    Krzewski K, Chen X, Strominger JL (2008) WIP is essential for lytic granule polarization and NK cell cytotoxicity. Proc Natl Acad Sci USA 105:2568–2573PubMedCrossRefGoogle Scholar
  54. 54.
    Krzewski K, Chen X, Orange JS, Strominger JL (2006) Formation of a WIP-, WASp-, actin-, and myosin IIA-containing multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling. J Cell Biol 173:121–132PubMedCrossRefGoogle Scholar
  55. 55.
    Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL (1996) Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin Cancer Res 2:161–173PubMedGoogle Scholar
  56. 56.
    Patankar MS, Yu J, Morrison JC, Belisle JA, Lattanzio FA, Deng Y, Wong NK, Morris HR, Dell A, Clark GF (2005) Potent suppression of natural killer cell response mediated by the ovarian tumor marker CA125. Gynecol Oncol 99:704–713PubMedCrossRefGoogle Scholar
  57. 57.
    Delgado DC, Hank J, Kolesar J, Lorentzen D, Gan J, Seo S, Kim KM, Shusterman S, Gillies SD, Reisfeld RA, Yang R, Gadbaw B, DeSantes KD, London WB, Seeger RC, Maris J, Sondel PM (2010) The role for genotypes of killer Ig-like receptors (KIRs), their ligands, and Fcγ receptors on responses of neuroblastoma patients to Hu14.18-IL2: a children’s oncology group report. Cancer Res 70:9554–9561PubMedCrossRefGoogle Scholar
  58. 58.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758PubMedCrossRefGoogle Scholar
  59. 59.
    Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jennifer A. A. Gubbels
    • 1
    • 5
  • Brian Gadbaw
    • 2
  • Ilia N. Buhtoiarov
    • 3
  • Sachi Horibata
    • 1
  • Arvinder K. Kapur
    • 1
  • Dhara Patel
    • 1
  • Jacquelyn A. Hank
    • 3
  • Stephen D. Gillies
    • 4
  • Paul M. Sondel
    • 2
    • 3
    • 6
  • Manish S. Patankar
    • 1
    • 7
  • Joseph Connor
    • 1
    • 8
  1. 1.Department of Obstetrics and GynecologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of PediatricsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Human OncologyUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Provenance Biopharmaceuticals Corp.WalthamUSA
  5. 5.Department of BiologyAugustana CollegeSioux FallsUSA
  6. 6.4159 Wisconsin Institutes for Medical ResearchMadisonUSA
  7. 7.H4/657 CSCMadisonUSA
  8. 8.Clinical Science Center-H4/650MadisonUSA

Personalised recommendations