Serum levels of cytoplasmic melanoma-associated antigen at diagnosis may predict clinical relapse in neuroblastoma patients

  • Fabio MorandiEmail author
  • Maria Valeria Corrias
  • Isabella Levreri
  • Paola Scaruffi
  • Lizzia Raffaghello
  • Barbara Carlini
  • Paola Bocca
  • Ignazia Prigione
  • Sara Stigliani
  • Loredana Amoroso
  • Soldano Ferrone
  • Vito Pistoia
Original article


The high molecular weight melanoma-associated antigen (HMW-MAA) and the cytoplasmic melanoma-associated antigen (cyt-MAA/LGALS3BP) are expressed in melanoma. Their serum levels are increased in melanoma patients and correlate with clinical outcome. We investigated whether these molecules can serve as prognostic markers for neuroblastoma (NB) patients. Expression of cyt-MAA and HMW-MAA was evaluated by flow cytometry in NB cell lines, patients’ neuroblasts (FI-NB), and short-term cultures of these latter cells (cNB). LGALS3BP gene expression was evaluated by RT–qPCR on FI-NB, cNB, and primary tumor specimens. Soluble HMW-MAA and cyt-MAA were tested by ELISA. Cyt-MAA and HMW-MAA were expressed in NB cell lines, cNB, and FI-NB samples. LGALS3BP gene expression was higher in primary tumors and cNB than in FI-NB samples. Soluble cyt-MAA, but not HMW-MAA, was detected in NB cell lines and cNBs supernatants. NB patients’ serum levels of both antigens were higher than those of the healthy children. High cyt-MAA serum levels at diagnosis associated with higher incidence of relapse, independently from other known risk factors. In conclusion, both HMW-MAA and cyt-MAA antigens, and LGALS3BP gene, were expressed by NB cell lines and patients’ neuroblasts, and both antigens’ serum levels were increased in NB patients. Elevated serum levels of cyt-MAA at diagnosis correlated with relapse, supporting that cyt-MAA may serve as early serological biomarker to individuate patients at higher risk of relapse that may require a more careful follow-up, after being validated in a larger cohort of patients at different time-points during follow-up. Given its immunogenicity, cyt-MAA may also be a potential target for NB immunotherapy.


Cytoplasmic melanoma-associated antigen Neuroblastoma Clinical relapse Serum biomarkers 



This work has been supported by grants from Ministero della Salute, Progetti di Ricerca Corrente. BC is recipient of a Fondazione Italiana per la Lotta al Neuroblastoma fellowship. SS is recipient of a fellowship from Ministero della Salute/Regione Liguria. We thank Mrs Chiara Bernardini and Camilla Valentino for excellent secretarial assistance, Dr. Mirco Ponzoni, Genoa, for providing us the G2a anti-GD2 antibody and Mrs Barbara Galleni at the Italian NB registry, Genoa, for the excellent work aimed at providing clinical data on NB patients.

Conflict of interest

The authors disclose any conflict of interest.


  1. 1.
    Labdenne P, Heikinheimo M (2002) Clinical use of tumor markers in childhood malignancies. Ann Med 34(5):316–323PubMedCrossRefGoogle Scholar
  2. 2.
    Giacomini P, Gambari R, Barbieri R, Nistico P, Tecce R, Pestka S, Gustafsson K, Natali PG, Fisher PB (1986) Regulation of the antigenic phenotype of human melanoma cells by recombinant interferons. Anticancer Res 6(5):877–884PubMedGoogle Scholar
  3. 3.
    Giacomini P, Veglia F, Cordiali Fei P, Rehle T, Natali PG, Ferrone S (1984) Level of a membrane-bound high-molecular-weight melanoma-associated antigen and a cytoplasmic melanoma-associated antigen in surgically removed tissues and in sera from patients with melanoma. Cancer Res 44(3):1281–1287PubMedGoogle Scholar
  4. 4.
    Giacomini P, Viora M, Tecce R, Knowles DM, Natali PG, Ferrone S (1987) A cytoplasmic human melanoma associated antigen as a marker of activation in lymphoid cells. Cancer Res 47(19):5175–5180PubMedGoogle Scholar
  5. 5.
    Goto Y, Ferrone S, Arigami T, Kitago M, Tanemura A, Sunami E, Nguyen SL, Turner RR, Morton DL, Hoon DS (2008) Human high molecular weight-melanoma-associated antigen: utility for detection of metastatic melanoma in sentinel lymph nodes. Clin Cancer Res 14(11):3401–3407PubMedCrossRefGoogle Scholar
  6. 6.
    Luo W, Hsu JC, Tsao CY, Ko E, Wang X, Ferrone S (2005) Differential immunogenicity of two peptides isolated by high molecular weight-melanoma-associated antigen-specific monoclonal antibodies with different affinities. J Immunol 174(11):7104–7110PubMedGoogle Scholar
  7. 7.
    Luo W, Ko E, Hsu JC, Wang X, Ferrone S (2006) Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects. J Immunol 176(10):6046–6054PubMedGoogle Scholar
  8. 8.
    Reynolds SR, Vergilis IJ, Szarek M, Ferrone S, Bystryn JC (2006) Cytoplasmic melanoma-associated antigen (CYT-MAA) serum level in patients with melanoma: a potential marker of response to immunotherapy? Int J Cancer 119(1):157–161PubMedCrossRefGoogle Scholar
  9. 9.
    Vergilis IJ, Szarek M, Ferrone S, Reynolds SR (2005) Presence and prognostic significance of melanoma-associated antigens CYT-MAA and HMW-MAA in serum of patients with melanoma. J Invest Dermatol 125(3):526–531PubMedCrossRefGoogle Scholar
  10. 10.
    Ulmer A, Fierlbeck G (2006) Circulating tumor cells and detection of the melanoma-associated antigen HMW-MAA in the serum of melanoma patients. J Invest Dermatol 126(4):914–915 author reply 915-916PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner S, Krepler C, Allwardt D, Latzka J, Strommer S, Scheiner O, Pehamberger H, Wiedermann U, Hafner C, Breiteneder H (2008) Reduction of human melanoma tumor growth in severe combined immunodeficient mice by passive transfer of antibodies induced by a high molecular weight melanoma-associated antigen mimotope vaccine. Clin Cancer Res 14(24):8178–8183PubMedCrossRefGoogle Scholar
  12. 12.
    Maciag PC, Seavey MM, Pan ZK, Ferrone S, Paterson Y (2008) Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res 68(19):8066–8075PubMedCrossRefGoogle Scholar
  13. 13.
    Tinari N, D’Egidio M, Iacobelli S, Bowen M, Starling G, Seachord C, Darveau R, Aruffo A (1997) Identification of the tumor antigen 90 K domains recognized by monoclonal antibodies SP2 and L3 and preparation and characterization of novel anti-90 K monoclonal antibodies. Biochem Biophys Res Commun 232(2):367–372PubMedCrossRefGoogle Scholar
  14. 14.
    Grassadonia A, Tinari N, Iurisci I, Piccolo E, Cumashi A, Innominato P, D’Egidio M, Natoli C, Piantelli M, Iacobelli S (2004) 90 K (Mac-2 BP) and galectins in tumor progression and metastasis. Glycoconj J 19(7–9):551–556PubMedGoogle Scholar
  15. 15.
    Fukaya Y, Shimada H, Wang LC, Zandi E, DeClerck YA (2008) Identification of galectin-3-binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. J Biol Chem 283(27):18573–18581PubMedCrossRefGoogle Scholar
  16. 16.
    Natali PG, Giacomini P, Russo C, Steinbach G, Fenoglio C, Ferrone S (1983) Antigenic profile of human melanoma cells. Analysis with monoclonal antibodies to histocompatibility antigens and to melanoma-associated antigens. J Cutan Pathol 10(4):225–237PubMedCrossRefGoogle Scholar
  17. 17.
    Scambia G, Panici PB, Iacobelli S, Baiocchi G, Battaglia F, Perrone L, Sonsini C, Ferrandina G, Natoli C, Mancuso S (1990) Recombinant alpha-2b-interferon enhances the circulating levels of a 90-kilodalton (K) tumor-associated antigen in patients with gynecologic and breast malignancies. Cancer 65(6):1325–1328PubMedCrossRefGoogle Scholar
  18. 18.
    Gray-Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445(7130):851–857PubMedCrossRefGoogle Scholar
  19. 19.
    Barker PA, Salehi A (2002) The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J Neurosci Res 67(6):705–712PubMedCrossRefGoogle Scholar
  20. 20.
    Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G (2000) T-cell recognition of melanoma-associated antigens. J Cell Physiol 182(3):323–331PubMedCrossRefGoogle Scholar
  21. 21.
    Epping MT, Bernards R (2006) A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res 66(22):10639–10642PubMedCrossRefGoogle Scholar
  22. 22.
    Jungbluth AA, Chen YT, Stockert E, Busam KJ, Kolb D, Iversen K, Coplan K, Williamson B, Altorki N, Old LJ (2001) Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 92(6):856–860PubMedCrossRefGoogle Scholar
  23. 23.
    Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216PubMedCrossRefGoogle Scholar
  24. 24.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369(9579):2106–2120PubMedCrossRefGoogle Scholar
  25. 25.
    Park JR, Eggert A, Caron H (2008) Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 55(1):97–120PubMedCrossRefGoogle Scholar
  26. 26.
    Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F et al (1993) Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11(8):1466–1477PubMedGoogle Scholar
  27. 27.
    Fischer M, Spitz R, Oberthur A, Westermann F, Berthold F (2008) Risk estimation of neuroblastoma patients using molecular markers. Klin Padiatr 220(3):137–146PubMedCrossRefGoogle Scholar
  28. 28.
    Mora J, Gerald WL, Cheung NK (2003) Evolving significance of prognostic markers associated with new treatment strategies in neuroblastoma. Cancer Lett 197(1–2):119–124PubMedCrossRefGoogle Scholar
  29. 29.
    Simon T, Hero B, Hunneman DH, Berthold F (2003) Tumour markers are poor predictors for relapse or progression in neuroblastoma. Eur J Cancer 39(13):1899–1903PubMedCrossRefGoogle Scholar
  30. 30.
    Cecchetto G, Mosseri V, De Bernardi B, Helardot P, Monclair T, Costa E, Horcher E, Neuenschwander S, Toma P, Rizzo A, Michon J, Holmes K (2005) Surgical risk factors in primary surgery for localized neuroblastoma: the LNESG1 study of the European International Society of Pediatric Oncology Neuroblastoma Group. J Clin Oncol 23(33):8483–8489. doi: 10.1200/JCO.2005.02.4661 PubMedCrossRefGoogle Scholar
  31. 31.
    Rubie H, De Bernardi B, Gerrard M, Canete A, Ladenstein R, Couturier J, Ambros P, Munzer C, Pearson AD, Garaventa A, Brock P, Castel V, Valteau-Couanet D, Holmes K, Di Cataldo A, Brichard B, Mosseri V, Marquez C, Plantaz D, Boni L, Michon J (2011) Excellent outcome with reduced treatment in infants with nonmetastatic and unresectable neuroblastoma without MYCN amplification: results of the prospective INES 99.1. J Clin Oncol 29(4):449–455. doi: 10.1200/JCO.2010.29.5196 PubMedCrossRefGoogle Scholar
  32. 32.
    Olgun N, Kansoy S, Aksoylar S, Cetingul N, Vergin C, Oniz H, Sarialioglu F, Kantar M, Uysal K, Tuncyurek M, Kargi A, Aktas S, Bayol U, Karaca I, Arikan A, Balik E, Aktug T, Elmas N, Kovanlikaya A, Kinay M, Anacak Y, Degirmenci B, Burak Z (2003) Experience of the izmir pediatric oncology group on neuroblastoma: IPOG-NBL-92 protocol. Pediatr Hematol Oncol 20(3):211–218PubMedGoogle Scholar
  33. 33.
    Brignole C, Pastorino F, Marimpietri D, Pagnan G, Pistorio A, Allen TM, Pistoia V, Ponzoni M (2004) Immune cell-mediated antitumor activities of GD2-targeted liposomal c-myb antisense oligonucleotides containing CpG motifs. J Natl Cancer Inst 96(15):1171–1180PubMedCrossRefGoogle Scholar
  34. 34.
    Pastorino F, Mumbengegwi DR, Ribatti D, Ponzoni M, Allen TM (2008) Increase of therapeutic effects by treating melanoma with targeted combinations of c-myc antisense and doxorubicin. J Control Release 126(1):85–94PubMedCrossRefGoogle Scholar
  35. 35.
    Chiesa S, Prigione I, Morandi F, Buoncompagni A, Picco P, Bocca P, Martini A, Pistoia V, Gattorno M (2004) Cytokine flexibility of early and differentiated memory T helper cells in juvenile idiopathic arthritis. J Rheumatol 31(10):2048–2054PubMedGoogle Scholar
  36. 36.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  37. 37.
    Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577PubMedGoogle Scholar
  38. 38.
    Corrias MV, Gambini C, Gregorio A, Croce M, Barisione G, Cossu C, Rossello A, Ferrini S, Fabbi M (2010) Different subcellular localization of ALCAM molecules in neuroblastoma: Association with relapse. Cell Oncol 32(1–2):77–86. doi: 10.3233/CLO-2009-0494 PubMedGoogle Scholar
  39. 39.
    Granchi D, Corrias MV, Garaventa A, Baglio SR, Cangemi G, Carlini B, Paolucci P, Giunti A, Baldini N (2011) Neuroblastoma and bone metastases: clinical significance and prognostic value of Dickkopf 1 plasma levels. Bone 48(1):152–159. doi: 10.1016/j.bone.2010.06.028 PubMedCrossRefGoogle Scholar
  40. 40.
    Gregorio A, Corrias MV, Castriconi R, Dondero A, Mosconi M, Gambini C, Moretta A, Moretta L, Bottino C (2008) Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7–H3 surface molecule. Histopathology 53(1):73–80. doi: 10.1111/j.1365-2559.2008.03070.x PubMedCrossRefGoogle Scholar
  41. 41.
    Marchetti A, Tinari N, Buttitta F, Chella A, Angeletti CA, Sacco R, Mucilli F, Ullrich A, Iacobelli S (2002) Expression of 90 K (Mac-2 BP) correlates with distant metastasis and predicts survival in stage I non-small cell lung cancer patients. Cancer Res 62(9):2535–2539PubMedGoogle Scholar
  42. 42.
    Gordower L, Decaestecker C, Kacem Y, Lemmers A, Gusman J, Burchert M, Danguy A, Gabius H, Salmon I, Kiss R, Camby I (1999) Galectin-3 and galectin-3-binding site expression in human adult astrocytic tumours and related angiogenesis. Neuropathol Appl Neurobiol 25(4):319–330PubMedCrossRefGoogle Scholar
  43. 43.
    Ulmer TA, Keeler V, Loh L, Chibbar R, Torlakovic E, Andre S, Gabius HJ, Laferte S (2006) Tumor-associated antigen 90 K/Mac-2-binding protein: possible role in colon cancer. J Cell Biochem 98(5):1351–1366PubMedCrossRefGoogle Scholar
  44. 44.
    Hajto T, Hostanska K, Frei K, Rordorf C, Gabius HJ (1990) Increased secretion of tumor necrosis factors alpha, interleukin 1, and interleukin 6 by human mononuclear cells exposed to beta-galactoside-specific lectin from clinically applied mistletoe extract. Cancer Res 50(11):3322–3326PubMedGoogle Scholar
  45. 45.
    Inohara H, Akahani S, Koths K, Raz A (1996) Interactions between galectin-3 and Mac-2-binding protein mediate cell–cell adhesion. Cancer Res 56(19):4530–4534PubMedGoogle Scholar
  46. 46.
    Pocza P, Suli-Vargha H, Darvas Z, Falus A (2008) Locally generated VGVAPG and VAPG elastin-derived peptides amplify melanoma invasion via the galectin-3 receptor. Int J Cancer 122(9):1972–1980. doi: 10.1002/ijc.23296 PubMedCrossRefGoogle Scholar
  47. 47.
    Ara T, Song L, Shimada H, Keshelava N, Russell HV, Metelitsa LS, Groshen SG, Seeger RC, DeClerck YA (2009) Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res 69(1):329–337PubMedCrossRefGoogle Scholar
  48. 48.
    Ozaki Y, Kontani K, Teramoto K, Fujita T, Tezuka N, Sawai S, Watanabe H, Fujino S, Asai T, Ohkubo I (2004) Identification of antigenic epitopes recognized by Mac-2 binding protein-specific cytotoxic T lymphocytes for use in cancer immunotherapy. Biochem Biophys Res Commun 317(4):1089–1095. doi: 10.1016/j.bbrc.2004.03.155 PubMedCrossRefGoogle Scholar
  49. 49.
    Ozaki Y, Kontani K, Hanaoka J, Chano T, Teramoto K, Tezuka N, Sawai S, Fujino S, Yoshiki T, Okabe H, Ohkubo I (2002) Expression and immunogenicity of a tumor-associated antigen, 90 K/Mac-2 binding protein, in lung carcinoma. Cancer 95(9):1954–1962. doi: 10.1002/cncr.10899 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fabio Morandi
    • 1
    Email author
  • Maria Valeria Corrias
    • 1
  • Isabella Levreri
    • 2
  • Paola Scaruffi
    • 3
  • Lizzia Raffaghello
    • 1
  • Barbara Carlini
    • 1
  • Paola Bocca
    • 1
  • Ignazia Prigione
    • 1
  • Sara Stigliani
    • 4
  • Loredana Amoroso
    • 5
  • Soldano Ferrone
    • 6
  • Vito Pistoia
    • 1
  1. 1.Laboratory of OncologyG. Gaslini Children’s HospitalGenoaItaly
  2. 2.Clinical PathologyG. Gaslini Children’s HospitalGenoaItaly
  3. 3.Centro Fisiopatologia della Riproduzione Umana, UO Ostetricia e GinecologiaAzienda Ospedaliera Universitaria “San Martino”GenoaItaly
  4. 4.Translational OncopathologyNational Cancer Research Institute (IST)GenoaItaly
  5. 5.Department of Hematology-OncologyG. Gaslini Children’s HospitalGenoaItaly
  6. 6.Hillman Cancer CenterUniversity of Pittsburgh Cancer InstitutePittsburghUSA

Personalised recommendations