Cancer Immunology, Immunotherapy

, Volume 60, Issue 8, pp 1147–1151 | Cite as

DNA fusion vaccines enter the clinic

  • Freda K. Stevenson
  • Ann Mander
  • Lindsey Chudley
  • Christian H. Ottensmeier
Focussed Research Review

Abstract

Induction of effective immune attack on cancer cells in patients requires conversion of weak tumor antigens into strong immunogens. Our strategy employs genetic technology to create DNA vaccines containing tumor antigen sequences fused to microbial genes. The fused microbial protein engages local CD4+ T cells to provide help for anti-tumor immunity, and to reverse potential regulation. In this review, we focus on induction of CD8+ T cells able to kill target tumor cells. The DNA vaccines incorporate tumor-derived peptide sequences fused to an engineered domain of tetanus toxin. In multiple models, this design induces strong CD8+ T-cell responses, able to suppress tumor growth. For clinical relevance, we have used “humanized” mice expressing HLA-A2, successfully inducing cytolytic T-cell responses against a range of candidate human peptides. To overcome physical restriction in translating to patients, we have used electroporation. Clinical trials of patients with cancer are showing induction of responses, with preliminary indications of suppression of tumor growth and evidence for clinically manageable concomitant autoimmunity.

Keywords

DNA vaccines Cytotoxic T cells Prostate cancer Carcinoembryonic antigen PIVAC 10 

Notes

Acknowledgments

This work was supported by Cancer Research UK, Experimental Medicine Cancer Centre and Leukaemia and Lymphoma Research. We thank Lynsey Block for help with the preparation of the manuscript.

References

  1. 1.
    Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760. doi: 10.1146/annurev.immunol.20.100301.064842 PubMedCrossRefGoogle Scholar
  2. 2.
    Spies B, Hochrein H, Vabulas M, Huster K, Busch DH, Schmitz F, Heit A, Wagner H (2003) Vaccination with plasmid DNA activates dendritic cells via toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol 171(11):5908–5912PubMedGoogle Scholar
  3. 3.
    Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, Tamura T, Takaoka A, Nishikura K, Taniguchi T (2008) Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci USA 105(14):5477–5482 doi: 0801295105 PubMedCrossRefGoogle Scholar
  4. 4.
    Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10(3):266–272 doi: ni.1702 PubMedCrossRefGoogle Scholar
  5. 5.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219 doi: 90500213.251 PubMedCrossRefGoogle Scholar
  6. 6.
    Rezvani K, Yong AS, Mielke S, Jafarpour B, Savani BN, Le RQ, Eniafe R, Musse L, Boss C, Kurlander R, Barrett AJ (2011) Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 96(3):432–440 doi: haematol.2010.031674 PubMedCrossRefGoogle Scholar
  7. 7.
    Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421(6925):852–856. doi: 10.1038/nature01441 PubMedCrossRefGoogle Scholar
  8. 8.
    Melief CJ, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8(5):351–360 doi:  nrc2373 PubMedCrossRefGoogle Scholar
  9. 9.
    Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120 doi: nrc2326 PubMedCrossRefGoogle Scholar
  10. 10.
    Savelyeva N, Munday R, Spellerberg MB, Lomonossoff GP, Stevenson FK (2001) Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies. Nat Biotechnol 19(8):760–764. doi: 10.1038/90816 PubMedCrossRefGoogle Scholar
  11. 11.
    Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, Roddick JS, King AT, McNicholl F, Savelyeva N, Rice J (2004) DNA vaccines to attack cancer. Proc Natl Acad Sci USA 101(Suppl 2):14646–14652. doi: 10.1073/pnas.0404896101 PubMedCrossRefGoogle Scholar
  12. 12.
    Chen W, McCluskey J (2006) Immunodominance and immunodomination: critical factors in developing effective CD8+ T-cell-based cancer vaccines. Adv Cancer Res 95:203–247. doi: S0065-230X(06)95006-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Chaise C, Buchan SL, Rice J, Marquet J, Rouard H, Kuentz M, Vittes GE, Molinier-Frenkel V, Farcet JP, Stauss HJ, Delfau-Larue MH, Stevenson FK (2008) DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood 112(7):2956–2964 doi:  blood-2008-02-137695 PubMedCrossRefGoogle Scholar
  14. 14.
    Rice J, Dossett ML, Ohlen C, Buchan SL, Kendall TJ, Dunn SN, Stevenson FK, Greenberg PD (2008) DNA fusion gene vaccination mobilizes effective anti-leukemic cytotoxic T lymphocytes from a tolerized repertoire. Eur J Immunol 38(8):2118–2130. doi: 10.1002/eji.200838213 PubMedCrossRefGoogle Scholar
  15. 15.
    Rice J, Buchan S, Dewchand H, Simpson E, Stevenson FK (2004) DNA fusion vaccines induce targeted epitope-specific CTLs against minor histocompatibility antigens from a normal or tolerized repertoire. J Immunol 173(7):4492–4499. doi: 173/7/4492 PubMedGoogle Scholar
  16. 16.
    Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A (1996) Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 29(6):371–380. doi: 10.1002/(SICI)1097-0045(199612)29:6<371:AID-PROS5>3.0.CO;2-B PubMedCrossRefGoogle Scholar
  17. 17.
    Stevenson FK, Ottensmeier CH, Rice J (2010) DNA vaccines against cancer come of age. Curr Opin Immunol 22(2):264–270 doi:  S0952-7915(10)00020-8 PubMedCrossRefGoogle Scholar
  18. 18.
    Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J (2005) Electroporation as a “prime/boost” strategy for naked DNA vaccination against a tumor antigen. J Immunol 174(10):6292–6298 doi:  174/10/6292 PubMedGoogle Scholar
  19. 19.
    Gronevik E, Tollefsen S, Sikkeland LI, Haug T, Tjelle TE, Mathiesen I (2003) DNA transfection of mononuclear cells in muscle tissue. J Gene Med 5(10):909–917. doi: 10.1002/jgm.416 PubMedCrossRefGoogle Scholar
  20. 20.
    Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, Stevenson F, Ottensmeier CH (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20(11):1269–1278. doi: 10.1089/hum.2009.067 PubMedCrossRefGoogle Scholar
  21. 21.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi: 10.1056/NEJMoa1001294 PubMedCrossRefGoogle Scholar
  22. 22.
    Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094. doi: 24/19/3089 PubMedCrossRefGoogle Scholar
  23. 23.
    Ottensmeier CHH, McCann KJ, et al. (2010) Clinical and immunological responses to a DNA fusion vaccine in patients with carcinoembryonic antigen–expressing tumors—a Cancer Research UK phase I/II study. American Society for Clinical Oncology (ASCO) annual meeting abstract 2579Google Scholar
  24. 24.
    Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87(13):982–990PubMedCrossRefGoogle Scholar
  25. 25.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723 doi:  NEJMoa1003466 PubMedCrossRefGoogle Scholar
  26. 26.
    Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626 doi:  mt2010272 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Freda K. Stevenson
    • 1
  • Ann Mander
    • 2
  • Lindsey Chudley
    • 3
  • Christian H. Ottensmeier
    • 3
  1. 1.Molecular Immunology Group, Cancer Sciences Division, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  2. 2.Cancer Sciences Division, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  3. 3.Experimental Cancer Medicine Centre, Cancer Sciences Division, Faculty of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations