Cancer Immunology, Immunotherapy

, 60:1243 | Cite as

Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-Aza-2′-Deoxycytidine

  • Mengyong Yan
  • Nourredine Himoudi
  • B. Piku Basu
  • Rebecca Wallace
  • Edmund Poon
  • Stuart Adams
  • Fyeza Hasan
  • Shao-An Xue
  • Natalie Wilson
  • Angus Dalgleish
  • Owen Williams
  • John Anderson
original article


The cancer testis antigen Preferentially Expressed Antigen of Melanoma (PRAME) is overexpressed in many solid tumours and haematological malignancies whilst showing minimal expression in normal tissues and is therefore a promising target for immunotherapy. HLA-A0201-restricted peptide epitopes from PRAME have previously been identified as potential immunogens to drive antigen-specific autologous CTL responses, capable of lysing PRAME expressing tumour cells. CTL lines, from 13 normal donors and 10 melanoma patients, all of whom were HLA-A0201 positive, were generated against the PRAME peptide epitope PRA100−108. Specific killing activity against PRA100−108 peptide-pulsed targets was weak compared with CTL lines directed against known immunodominant peptides. Moreover, limiting dilution cloning from selected PRAME-specific CTL lines resulted in the generation of a clone of only low to intermediate avidity. Addition of the demethylating agent 5-aza-2′-Deoxycytidine (DAC) increased PRAME expression in 7 out of 11 malignant cell lines including several B lineage leukaemia lines and also increased class I expression. Pre-treatment of target cells was associated with increased sensitivity to antigen-specific killing by the low avidity CTL. When CTL, as well as of the target cells, were treated, the antigen-specific killing was further augmented. Interestingly, one HLA-A0201-negative DAC-treated line (RAJI) showed increased sensitivity to killing by clones despite a failure of expression of PRAME or HLA-A0201. Together these data point to a general increased augmentation of cancer immunogenocity by DAC involving both antigen-specific and non-specific mechanisms.


PRAME 5-Aza-2′-Deoxycytidine Decitabine CTL Leukaemia Cancer 



Supported by research grants from SPARKS, the Leukaemia Research Fund (UK), Children With Leukaemia and RICC.

Supplementary material

262_2011_1024_MOESM1_ESM.pdf (507 kb)
Supplementary material 1 (PDF 507 kb)


  1. 1.
    Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6(2):199–208PubMedCrossRefGoogle Scholar
  2. 2.
    van Baren N, Chambost H, Ferrant A, Michaux L, Ikeda H, Millard I, Olive D, Boon T, Coulie PG (1998) PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol 102(5):1376–1379PubMedCrossRefGoogle Scholar
  3. 3.
    Van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536CrossRefGoogle Scholar
  4. 4.
    Boon K, Edwards JB, Siu IM, Olschner D, Eberhart CG, Marra MA, Strausberg RL, Riggins GJ (2003) Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 22(48):7687–7694PubMedCrossRefGoogle Scholar
  5. 5.
    Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M (2004) The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 10(13):4307–4313PubMedCrossRefGoogle Scholar
  6. 6.
    Epping MT, Hart AA, Glas AM, Krijgsman O, Bernards R (2008) PRAME expression and clinical outcome of breast cancer. Br J Cancer 99(3):398–403PubMedCrossRefGoogle Scholar
  7. 7.
    Neumann E, Engelsberg A, Decker J, Storkel S, Jaeger E, Huber C, Seliger B (1998) Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies? Cancer Res 58(18):4090–4095PubMedGoogle Scholar
  8. 8.
    Li CM, Guo M, Borczuk A, Powell CA, Wei M, Thaker HM, Friedman R, Klein U, Tycko B (2002) Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol 160(6):2181–2190PubMedCrossRefGoogle Scholar
  9. 9.
    Steinbach D, Viehmann S, Zintl F, Gruhn B (2002) PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 138(1):89–91PubMedCrossRefGoogle Scholar
  10. 10.
    Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, Sawyers C, Shah N, Stock W, Willman CL, Friend S, Linsley PS (2006) Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 103(8):2794–2799PubMedCrossRefGoogle Scholar
  11. 11.
    Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R (2005) The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122(6):835–847PubMedCrossRefGoogle Scholar
  12. 12.
    Passeron T, Valencia JC, Namiki T, Vieira WD, Passeron H, Miyamura Y, Hearing VJ (2009) Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest 119(4):954–963PubMedGoogle Scholar
  13. 13.
    Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, van Veelen PA, Kloosterman-Joosten AM, Vissers DC, ten Bosch GJ, Kester MG, Sijts A, Wouter Drijfhout J, Ossendorp F, Offringa R, Melief CJ (2001) Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 193(1):73–88PubMedCrossRefGoogle Scholar
  14. 14.
    Griffioen M, Kessler JH, Borghi M, van Soest RA, van der Minne CE, Nouta J, van der Burg SH, Medema JP, Schrier PI, Falkenburg JH, Osanto S, Melief CJ (2006) Detection and functional analysis of CD8 + T cells specific for PRAME: a target for T-cell therapy. Clin Cancer Res 12(10):3130–3136PubMedCrossRefGoogle Scholar
  15. 15.
    Greiner J, Schmitt M, Li L, Giannopoulos K, Bosch K, Schmitt A, Dohner K, Schlenk RF, Pollack JR, Dohner H, Bullinger L (2006) Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood 108(13):4109–4117PubMedCrossRefGoogle Scholar
  16. 16.
    Rezvani K, Yong AS, Tawab A, Jafarpour B, Eniafe R, Mielke S, Savani BN, Keyvanfar K, Li Y, Kurlander R, Barrett AJ (2009) Ex vivo characterization of polyclonal memory CD8 + T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 113(10):2245–2255PubMedCrossRefGoogle Scholar
  17. 17.
    Quintarelli C, Dotti G, De Angelis B, Hoyos V, Mims M, Luciano L, Heslop HE, Rooney CM, Pane F, Savoldo B (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112(5):1876–1885PubMedCrossRefGoogle Scholar
  18. 18.
    Weiser TS, Ohnmacht GA, Guo ZS, Fischette MR, Chen GA, Hong JA, Nguyen DM, Schrump DS (2001) Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann Thorac Surg 71(1):295–301 (discussion 301–292)PubMedCrossRefGoogle Scholar
  19. 19.
    Adair SJ, Hogan KT (2009) Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother 58(4):589–601PubMedCrossRefGoogle Scholar
  20. 20.
    Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Jose-Eneriz ES, Garate L, Cordeu L, Cervantes F, Prosper F, Heiniger A, Torres A (2007) Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res 31(11):1521–1528PubMedCrossRefGoogle Scholar
  21. 21.
    Weiser TS, Guo ZS, Ohnmacht GA, Parkhurst ML, Tong-On P, Marincola FM, Fischette MR, Yu X, Chen GA, Hong JA, Stewart JH, Nguyen DM, Rosenberg SA, Schrump DS (2001) Sequential 5-Aza-2′ deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. J Immunother 24(2):151–161PubMedCrossRefGoogle Scholar
  22. 22.
    Blum KA, Liu Z, Lucas DM, Chen P, Xie Z, Baiocchi R, Benson DM, Devine SM, Jones J, Andritsos L, Flynn J, Plass C, Marcucci G, Chan KK, Grever MR, Byrd JC (2010) Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br J Haematol 150(2):189–195PubMedGoogle Scholar
  23. 23.
    Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H, Vukosavljevic T, Huynh L, Lozanski G, Kefauver C, Plass C, Devine SM, Heerema NA, Murgo A, Chan KK, Grever MR, Byrd JC, Marcucci G (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25(25):3884–3891PubMedCrossRefGoogle Scholar
  24. 24.
    Dubovsky JA, McNeel DG, Powers JJ, Gordon J, Sotomayor EM, Pinilla-Ibarz JA (2009) Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces expression of NXF2, an immunogenic cancer testis antigen. Clin Cancer Res 15(10):3406–3415PubMedCrossRefGoogle Scholar
  25. 25.
    Kozbor D, Roder JC (1981) Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique. J Immunol 127(4):1275–1280PubMedGoogle Scholar
  26. 26.
    Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J, Delgado JC, Gribben JG, Nadler LM (1997) CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100(11):2757–2765PubMedCrossRefGoogle Scholar
  27. 27.
    Vonderheide RH, Hahn WC, Schultze JL, Nadler LM (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10(6):673–679PubMedCrossRefGoogle Scholar
  28. 28.
    Yan M, Himoudi N, Pule M, Sebire N, Poon E, Blair A, Williams O, Anderson J (2008) Development of cellular immune responses against PAX5, a novel target for cancer immunotherapy. Cancer Res 68(19):8058–8065PubMedCrossRefGoogle Scholar
  29. 29.
    Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F, Fonsatti E, Traversari C, Altomonte M, Maio M (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64(24):9167–9171PubMedCrossRefGoogle Scholar
  30. 30.
    Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, Treisman J, Rosenberg SA (1994) Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 54(7):1766–1771PubMedGoogle Scholar
  31. 31.
    Natsume A, Wakabayashi T, Tsujimura K, Shimato S, Ito M, Kuzushima K, Kondo Y, Sekido Y, Kawatsura H, Narita Y, Yoshida J (2008) The DNA demethylating agent 5-aza-2′-deoxycytidine activates NY-ESO-1 antigenicity in orthotopic human glioma. Int J Cancer 122(11):2542–2553PubMedCrossRefGoogle Scholar
  32. 32.
    Leisegang M, Wilde S, Spranger S, Milosevic S, Frankenberger B, Uckert W, Schendel DJ (2010) MHC-restricted fratricide of human lymphocytes expressing survivin-specific transgenic T cell receptors. J Clin Invest 120(11):3869–3877. doi: 10.1172/JCI43437 PubMedCrossRefGoogle Scholar
  33. 33.
    McCormack SE, Warlick ED (2010) Epigenetic approaches in the treatment of myelodysplastic syndromes: clinical utility of azacitidine. Onco Targets Ther 3:157–165PubMedGoogle Scholar
  34. 34.
    Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C, Ravandi F, Helmer R III, Shen L, Nimer SD, Leavitt R, Raza A, Saba H (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106(8):1794–1803PubMedCrossRefGoogle Scholar
  35. 35.
    Atallah E, Kantarjian H, Garcia-Manero G (2007) The role of decitabine in the treatment of myelodysplastic syndromes. Expert Opin Pharmacother 8(1):65–73PubMedCrossRefGoogle Scholar
  36. 36.
    Jain N, Rossi A, Garcia-Manero G (2009) Epigenetic therapy of leukemia: an update. Int J Biochem Cell Biol 41(1):72–80PubMedCrossRefGoogle Scholar
  37. 37.
    Momparler RL (2005) Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin Oncol 32(5):443–451PubMedCrossRefGoogle Scholar
  38. 38.
    Oki Y, Issa JP (2006) Review: recent clinical trials in epigenetic therapy. Rev Recent Clin Trials 1(2):169–182PubMedCrossRefGoogle Scholar
  39. 39.
    Coral S, Sigalotti L, Colizzi F, Spessotto A, Nardi G, Cortini E, Pezzani L, Fratta E, Fonsatti E, Di Giacomo AM, Nicotra MR, Natali PG, Altomonte M, Maio M (2006) Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: immunotherapeutic implications. J Cell Physiol 207(1):58–66PubMedCrossRefGoogle Scholar
  40. 40.
    Lubbert M, Bertz H, Ruter B, Marks R, Claus R, Wasch R, Finke J (2009) Non-intensive treatment with low-dose 5-aza-2′-deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients. Bone Marrow Transplant 44(9):585–588PubMedCrossRefGoogle Scholar
  41. 41.
    Czibere A, Bruns I, Kroger N, Platzbecker U, Lind J, Zohren F, Fenk R, Germing U, Schroder T, Graf T, Haas R, Kobbe G (2010) 5-Azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis. Bone Marrow Transplant 45(5):872–876PubMedCrossRefGoogle Scholar
  42. 42.
    Schenk T, Stengel S, Goellner S, Steinbach D, Saluz HP (2007) Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies. Genes Chromosom Cancer 46(9):796–804PubMedCrossRefGoogle Scholar
  43. 43.
    Wargo JA, Robbins PF, Li Y, Zhao Y, El-Gamil M, Caragacianu D, Zheng Z, Hong JA, Downey S, Schrump DS, Rosenberg SA, Morgan RA (2009) Recognition of NY-ESO-1 + tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunol Immunother 58(3):383–394PubMedCrossRefGoogle Scholar
  44. 44.
    Lu Q, Wu A, Ray D, Deng C, Attwood J, Hanash S, Pipkin M, Lichtenheld M, Richardson B (2003) DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 170(10):5124–5132PubMedGoogle Scholar
  45. 45.
    Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G, Vyas P, Cavenagh J, Stankovic T, Moss P, Craddock C (2010) Induction of a CD8 + T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 116(11):1908–1918PubMedCrossRefGoogle Scholar
  46. 46.
    Sanchez-Abarca LI, Gutierrez-Cosio S, Santamaria C, Caballero-Velazquez T, Blanco B, Herrero-Sanchez C, Garcia JL, Carrancio S, Hernandez-Campo P, Gonzalez FJ, Flores T, Ciudad L, Ballestar E, Del Canizo C, San Miguel JF, Perez-Simon JA (2010) Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood 115(1):107–121PubMedCrossRefGoogle Scholar
  47. 47.
    Lu D, Hoory T, Monie A, Wu A, Wang MC, Hung CF (2009) Treatment with demethylating agent, 5-aza-2′-deoxycytidine enhances therapeutic HPV DNA vaccine potency. Vaccine 27(32):4363–4369PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mengyong Yan
    • 1
  • Nourredine Himoudi
    • 1
  • B. Piku Basu
    • 1
  • Rebecca Wallace
    • 1
  • Edmund Poon
    • 1
  • Stuart Adams
    • 2
  • Fyeza Hasan
    • 1
  • Shao-An Xue
    • 3
  • Natalie Wilson
    • 4
  • Angus Dalgleish
    • 4
  • Owen Williams
    • 1
  • John Anderson
    • 1
  1. 1.Unit of Molecular Haematology and Cancer BiologyUniversity College London Institute of Child HealthLondonUK
  2. 2.Department of HaematologyGreat Ormond Street HospitalLondonUK
  3. 3.Department of ImmunologyUniversity College London Royal Free CampusLondonUK
  4. 4.Department of Medical OncologySt George’s Hospital Medical SchoolLondonUK

Personalised recommendations