Soluble MUC1 and serum MUC1-specific antibodies are potential prognostic biomarkers for platinum-resistant ovarian cancer

  • Raluca A. Budiu
  • Gina Mantia-Smaldone
  • Esther Elishaev
  • Tianjiao Chu
  • Julia Thaller
  • Kathryn McCabe
  • Diana Lenzner
  • Robert P. Edwards
  • Anda M. Vlad
Original article


MUC1 (CA15-3) and MUC16 (CA125) tumor-associated antigens are upregulated in ovarian cancer and can be detected in patients’ sera by standardized tests. We postulated that increased MUC1 and MUC16 antigens augment antibody responses in platinum-resistant ovarian cancer patients and that the frequency and intensity of these responses can be used as immune biomarkers of treatment response and disease outcome. We measured MUC1 and MUC16 tumor expression by immunohistochemistry (IHC), assessed serum antigenic levels and quantitated circulating antibodies by ELISA in a cohort of 28 ovarian cancer patients with platinum-resistant or platinum-refractory ovarian cancer, and treated with intraperitoneal (IP) interleukin-2 (IL-2). MUC1 and MUC16 were overexpressed in tumor samples and showed differential distribution profiles. Serum MUC1 (CA15-3) measurements were elevated in all patients and significantly correlated with increased risk of death (P = 0.003). MUC1-specific IgM and IgG anitbodies were found in 92 and 50% of cases, respectively. Patients with progressive disease had higher mean anti-MUC1 IgG than responders at both early (P = 0.025) and late (P = 0.022) time points during IP IL-2 treatment. Anti-MUC1 IgM antibodies inversely correlated with overall survival at both early (P = 0.052) and late (P = 0.009) time points. In contrast to MUC1, neither soluble MUC16 nor MUC16-specific antibodies were significantly associated with clinical response or overall survival in this study. Increased serum MUC1 and high anti-MUC1 antibody levels are prognostic for poor clinical response and reduced overall survival in platinum-resistant or platinum-refractory ovarian cancer.


Ovarian cancer Platinum resistance MUC1 (CA15-3) MUC16 (CA125) Humoral immunity Interleukin-2 Biomarkers 



We would like to thank Lindsay Mock and Joan Brozick for their excellent technical assistance and Drs Kristin Zorn and Daniel Cramer for critically reviewing the manuscript. This work was supported in part by NIH R21 CA74105-02S1, the American Cancer Society, the Scaife Foundation and the Pennsylvania Department of Health.

Supplementary material

262_2011_1010_MOESM1_ESM.ppt (2.4 mb)
Supplementary material 1 (PPT 2482 kb)


  1. 1.
    Guarneri V, Piacentini F, Barbieri E, Conte PF (2010) Achievements and unmet needs in the management of advanced ovarian cancer. Gynecol Oncol 117:152–158PubMedCrossRefGoogle Scholar
  2. 2.
    Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9:874–885PubMedCrossRefGoogle Scholar
  3. 3.
    Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ (2004) MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293PubMedCrossRefGoogle Scholar
  4. 4.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337PubMedCrossRefGoogle Scholar
  5. 5.
    Hunter VJ, Daly L, Helms M, Soper JT, Berchuck A, Clarke-Pearson DL, Bast RC Jr (1990) The prognostic significance of CA 125 half-life in patients with ovarian cancer who have received primary chemotherapy after surgical cytoreduction. Am J Obstet Gynecol 163:1164–1167PubMedGoogle Scholar
  6. 6.
    Chauhan SC, Singh AP, Ruiz F, Johansson SL, Jain M, Smith LM, Moniaux N, Batra SK (2006) Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod Pathol 19:1386–1394PubMedCrossRefGoogle Scholar
  7. 7.
    Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC (1981) Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 68:1331–1337PubMedCrossRefGoogle Scholar
  8. 8.
    Vlad AM, Budiu RA, Lenzner DE, Wang Y, Thaller JA, Colonello K, Crowley-Nowick PA, Kelley JL, Price FV, Edwards RP (2010) A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol Immunother 59:293–301PubMedCrossRefGoogle Scholar
  9. 9.
    Gordon AN, Schultes BC, Gallion H, Edwards R, Whiteside TL, Cermak JM, Nicodemus CF (2004) CA125- and tumor-specific T-cell responses correlate with prolonged survival in oregovomab-treated recurrent ovarian cancer patients. Gynecol Oncol 94:340–351PubMedCrossRefGoogle Scholar
  10. 10.
    Pfisterer J, du Bois A, Sehouli J, Loibl S, Reinartz S, Reuss A, Canzler U, Belau A, Jackisch C, Kimmig R, Wollschlaeger K, Heilmann V, Hilpert F (2006) The anti-idiotypic antibody abagovomab in patients with recurrent ovarian cancer. A phase I trial of the AGO-OVAR. Ann Oncol 17:1568–1577PubMedCrossRefGoogle Scholar
  11. 11.
    Silk AW, Schoen RE, Potter DM, Finn OJ (2009) Humoral immune response to abnormal MUC1 in subjects with colorectal adenoma and cancer. Mol Immunol 47:52–56PubMedCrossRefGoogle Scholar
  12. 12.
    Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, Finn OJ, Ramanathan RK (2008) A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 6:955–964PubMedGoogle Scholar
  13. 13.
    Ramanathan RK, Lee KM, McKolanis J, Hitbold E, Schraut W, Moser AJ, Warnick E, Whiteside T, Osborne J, Kim H, Day R, Troetschel M, Finn OJ (2005) Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 54:254–264PubMedCrossRefGoogle Scholar
  14. 14.
    Rosen DG, Wang L, Atkinson JN, Yu Y, Lu KH, Diamandis EP, Hellstrom I, Mok SC, Liu J, Bast RC Jr (2005) Potential markers that complement expression of CA125 in epithelial ovarian cancer. Gynecol Oncol 99:267–277PubMedCrossRefGoogle Scholar
  15. 15.
    Jacobs I, Bast RC (1989) CA125 tumour-associated antigen: a review of the literature. Hum Reprod 4:1–12Google Scholar
  16. 16.
    Rosen DG, Huang X, Deavers MT, Malpica A, Silva EG, Liu J (2004) Validation of tissue microarray technology in ovarian carcinoma. Mod Pathol 17:790–797PubMedCrossRefGoogle Scholar
  17. 17.
    Al-azawi D, Kelly G, Myers E, McDermott EW, Hill AD, Duffy MJ, Higgins NO (2006) CA 15-3 is predictive of response and disease recurrence following treatment in locally advanced breast cancer. BMC Cancer 6:220PubMedCrossRefGoogle Scholar
  18. 18.
    Duffy MJ, Duggan C, Keane R, Hill AD, McDermott E, Crown J, O’Higgins N (2004) High preoperative CA 15-3 concentrations predict adverse outcome in node-negative and node-positive breast cancer: study of 600 patients with histologically confirmed breast cancer. Clin Chem 50:559–563PubMedCrossRefGoogle Scholar
  19. 19.
    Markman M, Federico M, Liu PY, Hannigan E, Alberts D (2006) Significance of early changes in the serum CA-125 antigen level on overall survival in advanced ovarian cancer. Gynecol Oncol 103:195–198PubMedCrossRefGoogle Scholar
  20. 20.
    Clarke B, Tinker AV, Lee CH, Subramanian S, van de Rijn M, Turbin D, Kalloger S, Han G, Ceballos K, Cadungog MG, Huntsman DG, Coukos G, Gilks CB (2008) Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod Pathol 22(3):393–402Google Scholar
  21. 21.
    Jeong IG, Han KS, Joung JY, Choi WS, Hwang SS, Yang SO, Seo HK, Chung J, and Lee KH (2007) Analysis of changes in the total lymphocyte and eosinophil count during immunotherapy for metastatic renal cell carcinoma: correlation with response and survival. J Korean Med Sci 22(Suppl):S122–S128Google Scholar
  22. 22.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8 + tumor-infiltrating lymphocytes and a high CD8 +/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543PubMedCrossRefGoogle Scholar
  23. 23.
    Reuschenbach M, von Knebel Doeberitz M, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58:1535–1544PubMedCrossRefGoogle Scholar
  24. 24.
    Egeter O, Mocikat R, Ghoreschi K, Dieckmann A, Rocken M (2000) Eradication of disseminated lymphomas with CpG-DNA activated T helper type 1 cells from nontransgenic mice. Cancer Res 60:1515–1520PubMedGoogle Scholar
  25. 25.
    Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4 + T cells against NY-ESO-1. N Engl J Med 358:2698–2703PubMedCrossRefGoogle Scholar
  26. 26.
    Muller-Hermelink N, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, Mocikat R, Schwaiger M, Forster I, Huss R, Weber WA, Kneilling M, Rocken M (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518PubMedCrossRefGoogle Scholar
  27. 27.
    Lanzavecchia A (1985) Antigen-specific interaction between T and B cells. Nature 314:537–539PubMedCrossRefGoogle Scholar
  28. 28.
    Rock KL, Benacerraf B, Abbas AK (1984) Antigen presentation by hapten-specific B lymphocytes. I. Role of surface immunoglobulin receptors. J Exp Med 160:1102–1113PubMedCrossRefGoogle Scholar
  29. 29.
    Cerutti A, Zan H, Schaffer A, Bergsagel L, Harindranath N, Max EE, Casali P (1998) CD40 ligand and appropriate cytokines induce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM + IgD + B cell line. J Immunol 160:2145–2157PubMedGoogle Scholar
  30. 30.
    Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18:263–266PubMedCrossRefGoogle Scholar
  31. 31.
    Terabe M, Park JM, Berzofsky JA (2004) Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother 53:79–85PubMedCrossRefGoogle Scholar
  32. 32.
    Hogdall EV, Hogdall CK, Blaakaer J, Heegaard NH, Glud E, Christensen L, Bock JE, Norgaard-Pedersen B, Wiik A, Kjaer SK (2002) P53 autoantibodies in sera from Danish ovarian cancer patients and their correlation with clinical data and prognosis. Apmis 110:545–553PubMedCrossRefGoogle Scholar
  33. 33.
    Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, Intengan M, Beck A, Keitz B, Santiago D, Williamson B, Scanlan MJ, Ritter G, Chen YT, Driscoll D, Sood A, Lele S, Old LJ (2003) NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res 63:6076–6083PubMedGoogle Scholar
  34. 34.
    Oei AL, Moreno M, Verheijen RH, Sweep FC, Thomas CM, Massuger LF, von Mensdorff-Pouilly S (2008) Induction of IgG antibodies to MUC1 and survival in patients with epithelial ovarian cancer. Int J Cancer 123:1848–1853PubMedCrossRefGoogle Scholar
  35. 35.
    Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y (2003) Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer 103:97–100PubMedCrossRefGoogle Scholar
  36. 36.
    Hirasawa Y, Kohno N, Yokoyama A, Kondo K, Hiwada K, Miyake M (2000) Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am J Respir Crit Care Med 161:589–594PubMedGoogle Scholar
  37. 37.
    von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P, Snijdewint FG, Kok A, Van Kamp GJ, Paul MA, Van Diest PJ, Meijer S, Hilgers J (2000) Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J Clin Oncol 18:574–583Google Scholar
  38. 38.
    Cramer DW, Titus-Ernstoff L, McKolanis JR, Welch WR, Vitonis AF, Berkowitz RS, Finn OJ (2005) Conditions associated with antibodies against the tumor-associated antigen MUC1 and their relationship to risk for ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:1125–1131PubMedCrossRefGoogle Scholar
  39. 39.
    Rustin GJ, Bast RC Jr, Kelloff GJ, Barrett JC, Carter SK, Nisen PD, Sigman CC, Parkinson DR, Ruddon RW (2004) Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. Clin Cancer Res 10:3919–3926PubMedCrossRefGoogle Scholar
  40. 40.
    Rustin GJ, Nelstrop AE, McClean P, Brady MF, McGuire WP, Hoskins WJ, Mitchell H, Lambert HE (1996) Defining response of ovarian carcinoma to initial chemotherapy according to serum CA 125. J Clin Oncol 14:1545–1551PubMedGoogle Scholar
  41. 41.
    Rustin GJ, Nelstrop AE, Tuxen MK, Lambert HE (1996) Defining progression of ovarian carcinoma during follow-up according to CA 125: a North Thames Ovary Group Study. Ann Oncol 7:361–364PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raluca A. Budiu
    • 1
    • 2
  • Gina Mantia-Smaldone
    • 3
  • Esther Elishaev
    • 1
    • 4
  • Tianjiao Chu
    • 2
  • Julia Thaller
    • 2
  • Kathryn McCabe
    • 2
  • Diana Lenzner
    • 5
  • Robert P. Edwards
    • 1
    • 2
  • Anda M. Vlad
    • 1
    • 2
  1. 1.Department of Obstetrics, Gynecology, and Reproductive Sciences, School of MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Magee-Women’s Research InstitutePittsburghUSA
  3. 3.Division of Gynecologic OncologyHospital of the University of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Pathology, Magee-Women’s HospitalUniversity of Pittsburgh Medical CenterPittsburghUSA
  5. 5.University of Pittsburgh Cancer InstitutePittsburghUSA

Personalised recommendations