Cancer Immunology, Immunotherapy

, Volume 60, Issue 5, pp 693–703

TH1 predominance is associated with improved survival in pediatric medulloblastoma patients

  • Verena Wiegering
  • Matthias Eyrich
  • Stefan Rutkowski
  • Matthias Wölfl
  • Paul G. Schlegel
  • Beate Winkler
Original article


Medulloblastoma, a primitive neuro-ectodermal tumor that arises in the posterior fossa, is the most common malignant brain tumor occurring in childhood. Even though 60–70% of children with medulloblastoma will be cured with intensive multimodal therapy, including surgery, radiotherapy, and chemotherapy, a significant proportion of surviving patients may suffer from long-term treatment-related sequelae. Therapeutic success is limited especially in younger children by radiotherapy-induced neurocognitive longterm deficits. In order to avoid or delay craniospinal radiotherapy, high-dose chemotherapy followed by autologous stem cell transplantation (HSCT) has become an established treatment modality. Data on the host immunologic environment in medulloblastoma patients are rare, notably data on cytokine expression and immune reconstitution in patients with medulloblastoma undergoing HSCT are lacking. In this present study, we therefore decided to prospectively assess immune function following 24 consecutive autologous HSCT in 17 children with medulloblastoma treated according to the German-Austrian-Swiss HIT-2000-protocol. TH1 predominance was found to be the most important factor for probability of survival. Already before HSCT, survivors showed higher IFNγ levels in sera as well as higher numbers of IFNγ-positive T-cells. After transplantation, this effect was even more pronounced. Patients with higher numbers of IFNγ- and TNFα-positive T-cells had a more favorable outcome at all analyzed time points. In addition, patients in complete remission (CR) before transplantation, known to have a better prognosis a priori, showed higher expression of IFNγ in T-cells. Taken together, this is the first report to demonstrate that high expression of IFNγ and TNFα in T-cells of medulloblastoma patients in the early post-transplant period correlates with a better prognosis. Our data point toward a potentially important influence of TH1-cytokine expression before and after transplantation on the survival of pediatric medulloblastoma patients.


Pediatric medulloblastoma High-dose chemotherapy T cell reconstitution IFNγ and TNFα TH1 predominance Prognostic factors 

Supplementary material

262_2011_981_MOESM1_ESM.pdf (18 kb)
Supplementary material 1 (PDF 18 kb)


  1. 1.
    Gurney JG, van Wijngaarden E (1999) Extremely low frequency electromagnetic fields (EMF) and brain cancer in adults and children: review and comment. Neuro Oncol 1(3):212–220PubMedGoogle Scholar
  2. 2.
    Rood BR, Macdonald TJ, Packer RJ (2004) Current treatment of medulloblastoma: recent advances and future challenges. Semin Oncol 31(5):666–675PubMedCrossRefGoogle Scholar
  3. 3.
    Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M, Soerensen N, Graf N, Emser A, Pietsch T, Wolff JE, Kortmann RD, Kuehl J (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352(10):978–986. doi:10.1056/NEJMoa042176 PubMedCrossRefGoogle Scholar
  4. 4.
    Ottensmeier H, Frahsek S, Faldum A, Rutkowski S (2010) Longterm neuropsychological follow up of young children with medulloblastoma and ependymoma treated in the trials HIT-SKK 87/92 and HIT2000. Neuro Oncol 12 (6):ii13Google Scholar
  5. 5.
    Palmer SL, Goloubeva O, Reddick WE, Glass JO, Gajjar A, Kun L, Merchant TE, Mulhern RK (2001) Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J Clin Oncol 19(8):2302–2308PubMedGoogle Scholar
  6. 6.
    Rutkowski S (2006) Current treatment approaches to early childhood medulloblastoma. Expert Rev Neurother 6(8):1211–1221. doi:10.1586/14737175.6.8.1211 PubMedCrossRefGoogle Scholar
  7. 7.
    Warren KE, Packer RJ (2004) Current approaches to CNS tumors in infants and very young children. Expert Rev Neurother 4(4):681–690. doi:10.1586/14737175.4.4.681 PubMedCrossRefGoogle Scholar
  8. 8.
    Grill J, Sainte-Rose C, Jouvet A, Gentet JC, Lejars O, Frappaz D, Doz F, Rialland X, Pichon F, Bertozzi AI, Chastagner P, Couanet D, Habrand JL, Raquin MA, Le Deley MC, Kalifa C (2005) Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 6(8):573–580. doi:10.1016/S1470-2045(05)70252-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Wolff JE, Finlay JL (2004) High-dose chemotherapy in childhood brain tumors. Onkologie 27(3):239–245. doi:10.1159/000077973 PubMedCrossRefGoogle Scholar
  10. 10.
    Dunkel IJ, Finlay JL (2002) High-dose chemotherapy with autologous stem cell rescue for brain tumors. Crit Rev Oncol Hematol 41(2):197–204PubMedCrossRefGoogle Scholar
  11. 11.
    Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL, Gress RE (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84(7):2221–2228PubMedGoogle Scholar
  12. 12.
    Perez-Martinez A, Quintero V, Vicent MG, Sevilla J, Diaz MA, Madero L (2004) High-dose chemotherapy with autologous stem cell rescue as first line of treatment in young children with medulloblastoma and supratentorial primitive neuroectodermal tumors. J Neurooncol 67(1–2):101–106PubMedCrossRefGoogle Scholar
  13. 13.
    Berthold F, Boos J, Burdach S, Erttmann R, Henze G, Hermann J, Klingebiel T, Kremens B, Schilling FH, Schrappe M, Simon T, Hero B (2005) Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol 6(9):649–658. doi:10.1016/S1470-2045(05)70291-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Leo E, Schlegel PG, Lindemann A (1997) Chemotherapeutic induction of long-term remission in metastatic medulloblastoma. J Neurooncol 32(2):149–154PubMedCrossRefGoogle Scholar
  15. 15.
    Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA, Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D, Gilbertson RJ (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7(10):813–820. doi:10.1016/S1470-2045(06)70867-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Fleischhack G, Popping K, Hasan C, Utsch B, Juttner J, Bode U (1998) High dose chemotherapy with thiotepa, carboplatin, VP16 and autologous stem cell transplantation in treatment of malignant brain tumors with poor prognosis. Results of a mono-center pilot study. Klin Padiatr 210(4):248–255. doi:10.1055/s-2008-1043887
  17. 17.
    Zeltzer PM, Boyett JM, Finlay JL, Albright AL, Rorke LB, Milstein JM, Allen JC, Stevens KR, Stanley P, Li H, Wisoff JH, Geyer JR, McGuire-Cullen P, Stehbens JA, Shurin SB, Packer RJ (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 17(3):832–845PubMedGoogle Scholar
  18. 18.
    Dunkel IJ, Boyett JM, Yates A, Rosenblum M, Garvin JH Jr, Bostrom BC, Goldman S, Sender LS, Gardner SL, Li H, Allen JC, Finlay JL (1998) High-dose carboplatin, thiotepa, and etoposide with autologous stem-cell rescue for patients with recurrent medulloblastoma. Children’s Cancer Group. J Clin Oncol 16(1):222–228PubMedGoogle Scholar
  19. 19.
    Meister N, Shalaby T, von Bueren AO, Rivera P, Patti R, Oehler C, Pruschy M, Grotzer MA (2007) Interferon-gamma mediated up-regulation of caspase-8 sensitizes medulloblastoma cells to radio- and chemotherapy. Eur J Cancer 43(12):1833–1841. doi:10.1016/j.ejca.2007.05.028 PubMedCrossRefGoogle Scholar
  20. 20.
    Grotzer MA, Eggert A, Zuzak TJ, Janss AJ, Marwaha S, Wiewrodt BR, Ikegaki N, Brodeur GM, Phillips PC (2000) Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 19(40):4604–4610. doi:10.1038/sj.onc.1203816 PubMedCrossRefGoogle Scholar
  21. 21.
    Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA (2002) Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 38(1):83–91PubMedCrossRefGoogle Scholar
  22. 22.
    Reed JC (1999) Caspases and cytokines: roles in inflammation and autoimmunity. Adv Immunol 73:265–299PubMedCrossRefGoogle Scholar
  23. 23.
    Fulda S, Debatin KM (2006) 5-Aza-2’-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene 25(37):5125–5133. doi:10.1038/sj.onc.1209518 PubMedGoogle Scholar
  24. 24.
    Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591. doi:10.1146/annurev.immunol.15.1.563 PubMedCrossRefGoogle Scholar
  25. 25.
    Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795. doi:10.1146/annurev.immunol.15.1.749 PubMedCrossRefGoogle Scholar
  26. 26.
    Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13(2):95–109PubMedCrossRefGoogle Scholar
  27. 27.
    Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27(10):1627–1636. doi:10.1200/JCO.2008.17.9432 PubMedCrossRefGoogle Scholar
  28. 28.
    Packer RJ (2005) Medulloblastoma. J Neurosurg 103(4 Suppl):299–300. doi:10.3171/ped.2005.103.4.0299 (discussion 300–291)
  29. 29.
    Rutkowski S, von Bueren A, von Hoff K, Hartmann W, Shalaby T, Deinlein F, Warmuth-Metz M, Soerensen N, Emser A, Bode U, Mittler U, Urban C, Benesch M, Kortmann RD, Schlegel PG, Kuehl J, Pietsch T, Grotzer M (2007) Prognostic relevance of clinical and biological risk factors in childhood medulloblastoma: results of patients treated in the prospective multicenter trial HIT’91. Clin Cancer Res 13(9):2651–2657. doi:10.1158/1078-0432.CCR-06-1779 PubMedCrossRefGoogle Scholar
  30. 30.
    Shalaby T, von Bueren AO, Hurlimann ML, Fiaschetti G, Castelletti D, Masayuki T, Nagasawa K, Arcaro A, Jelesarov I, Shin-ya K, Grotzer M (2010) Disabling c-Myc in childhood medulloblastoma and atypical teratoid/rhabdoid tumor cells by the potent G-quadruplex interactive agent S2T1-6OTD. Mol Cancer Ther 9(1):167–179. doi:10.1158/1535-7163.MCT-09-0586
  31. 31.
    Eyrich M, Wiegering V, Lim A, Schrauder A, Winkler B, Schlegel PG (2009) Immune function in children under chemotherapy for standard risk acute lymphoblastic leukaemia - a prospective study of 20 paediatric patients. Br J Haematol 147(3):360–370. doi:10.1111/j.1365-2141.2009.07862.x PubMedCrossRefGoogle Scholar
  32. 32.
    Mascher B, Schlenke P, Seyfarth M (1999) Expression and kinetics of cytokines determined by intracellular staining using flow cytometry. J Immunol Methods 223(1):115–121PubMedCrossRefGoogle Scholar
  33. 33.
    Eyrich M, Croner T, Leiler C, Lang P, Bader P, Klingebiel T, Niethammer D, Schlegel PG (2002) Distinct contributions of CD4(+) and CD8(+) naive and memory T-cell subsets to overall T-cell-receptor repertoire complexity following transplantation of T-cell-depleted CD34-selected hematopoietic progenitor cells from unrelated donors. Blood 100(5):1915–1918. doi:10.1182/blood-2001-11-0005 PubMedCrossRefGoogle Scholar
  34. 34.
    Eyrich M, Wollny G, Tzaribaschev N, Dietz K, Brugger D, Bader P, Lang P, Schilbach K, Winkler B, Niethammer D, Schlegel PG (2005) Onset of thymic recovery and plateau of thymic output are differentially regulated after stem cell transplantation in children. Biol Blood Marrow Transplant 11(3):194–205. doi:10.1016/j.bbmt.2004.12.001 PubMedCrossRefGoogle Scholar
  35. 35.
    Sung KW, Yoo KH, Cho EJ, Koo HH, Lim do H, Shin HJ, Ahn SD, Ra YS, Choi ES, Ghim TT (2007) High-dose chemotherapy and autologous stem cell rescue in children with newly diagnosed high-risk or relapsed medulloblastoma or supratentorial primitive neuroectodermal tumor. Pediatr Blood Cancer 48(4):408–415. doi:10.1002/pbc.21064 PubMedCrossRefGoogle Scholar
  36. 36.
    Guo H, Qiao Z, Zhu L, Wang H, Su L, Lu Y, Cui Y, Jiang B, Zhu Q, Xu L (2004) Th1/Th2 cytokine profiles and their relationship to clinical features in patients following nonmyeloablative allogeneic stem cell transplantation. Am J Hematol 75(2):78–83. doi:10.1002/ajh.10443 PubMedCrossRefGoogle Scholar
  37. 37.
    Mitra DK, Singh HP, Singh M, Alwadi A, Kochupillai V, Raina V, Kumar L, Mehra NK (2002) Reconstitution of naive T cells and type 1 function after autologous peripheral stem cell transplantation: impact on the relapse of original cancer. Transplantation 73(8):1336–1339PubMedCrossRefGoogle Scholar
  38. 38.
    Mackall CL, Stein D, Fleisher TA, Brown MR, Hakim FT, Bare CV, Leitman SF, Read EJ, Carter CS, Wexler LH, Gress RE (2000) Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusions in children and young adults. Blood 96(2):754–762PubMedGoogle Scholar
  39. 39.
    Guillaume T, Rubinstein DB, Symann M (1998) Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 92(5):1471–1490PubMedGoogle Scholar
  40. 40.
    Hoepfner S, Haut PR, O’Gorman M, Kletzel M (2003) Rapid immune reconstitution following autologous hematopoietic stem cell transplantation in children: a single institution experience. Bone Marrow Transplant 31(4):285–290. doi:10.1038/sj.bmt.1703831 PubMedCrossRefGoogle Scholar
  41. 41.
    Kalwak K, Gorczynska E, Toporski J, Turkiewicz D, Slociak M, Ussowicz M, Latos-Grazynska E, Krol M, Boguslawska-Jaworska J, Chybicka A (2002) Immune reconstitution after haematopoietic cell transplantation in children: immunophenotype analysis with regard to factors affecting the speed of recovery. Br J Haematol 118(1):74–89PubMedCrossRefGoogle Scholar
  42. 42.
    Reimer P, Kunzmann V, Wilhelm M, Weissbrich B, Kraemer D, Berghammer H, Weissinger F (2003) Cellular and humoral immune reconstitution after autologous peripheral blood stem cell transplantation (PBSCT). Ann Hematol 82(5):263–270. doi:10.1007/s00277-003-0630-4 PubMedGoogle Scholar
  43. 43.
    Bronte V, Mocellin S (2009) Suppressive influences in the immune response to cancer. J Immunother 32(1):1–11. doi:10.1097/CJI.0b013e3181837276 PubMedCrossRefGoogle Scholar
  44. 44.
    Chipeta J, Komada Y, Zhang XL, Deguchi T, Sugiyama K, Azuma E, Sakurai M (1998) CD4 + and CD8 + cell cytokine profiles in neonates, older children, and adults: increasing T helper type 1 and T cytotoxic type 1 cell populations with age. Cell Immunol 183(2):149–156. doi:10.1006/cimm.1998.1244 PubMedCrossRefGoogle Scholar
  45. 45.
    Hoffmann F, Albert MH, Arenz S, Bidlingmaier C, Berkowicz N, Sedlaczek S, Till H, Pawlita I, Renner ED, Weiss M, Belohradsky BH (2005) Intracellular T-cell cytokine levels are age-dependent in healthy children and adults. Eur Cytokine Netw 16(4):283–288PubMedGoogle Scholar
  46. 46.
    Wiegering V, Eyrich M, Wunder C, Gunther H, Schlegel PG, Winkler B (2009) Age-related changes in intracellular cytokine expression in healthy children. Eur Cytokine Netw 20(2):75–80. doi:10.1684/ecn.2009.0149 PubMedGoogle Scholar
  47. 47.
    Lee PP, Zeng D, McCaulay AE, Chen YF, Geiler C, Umetsu DT, Chao NJ (1997) T helper 2-dominant antilymphoma immune response is associated with fatal outcome. Blood 90(4):1611–1617PubMedGoogle Scholar
  48. 48.
    Dredge K, Marriott JB, Todryk SM, Dalgleish AG (2002) Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol Immunother 51(10):521–531. doi:10.1007/s00262-002-0309-z PubMedCrossRefGoogle Scholar
  49. 49.
    Santana MA, Rosenstein Y (2003) What it takes to become an effector T cell: the process, the cells involved, and the mechanisms. J Cell Physiol 195(3):392–401. doi:10.1002/jcp.10258 PubMedCrossRefGoogle Scholar
  50. 50.
    Popko B, Baerwald KD (1999) Oligodendroglial response to the immune cytokine interferon gamma. Neurochem Res 24(2):331–338PubMedCrossRefGoogle Scholar
  51. 51.
    Sredni-Kenigsbuch D (2002) TH1/TH2 cytokines in the central nervous system. Int J Neurosci 112(6):665–703PubMedCrossRefGoogle Scholar
  52. 52.
    Corbin JG, Kelly D, Rath EM, Baerwald KD, Suzuki K, Popko B (1996) Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol Cell Neurosci 7(5):354–370. doi:10.1006/mcne.1996.0026 PubMedCrossRefGoogle Scholar
  53. 53.
    LaFerla FM, Sugarman MC, Lane TE, Leissring MA (2000) Regional hypomyelination and dysplasia in transgenic mice with astrocyte-directed expression of interferon-gamma. J Mol Neurosci 15(1):45–59. doi:10.1385/JMN:15:1:45 PubMedCrossRefGoogle Scholar
  54. 54.
    Lin W, Kemper A, McCarthy KD, Pytel P, Wang JP, Campbell IL, Utset MF, Popko B (2004) Interferon-gamma induced medulloblastoma in the developing cerebellum. J Neurosci 24(45):10074–10083. doi:10.1523/JNEUROSCI.2604-04.2004 PubMedCrossRefGoogle Scholar
  55. 55.
    Pingoud-Meier C, Lang D, Janss AJ, Rorke LB, Phillips PC, Shalaby T, Grotzer MA (2003) Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res 9(17):6401–6409PubMedGoogle Scholar
  56. 56.
    Cloppenborg T, Stanulla M, Zimmermann M, Schrappe M, Welte K, Klein C (2005) Immunosurveillance of childhood ALL: polymorphic interferon-gamma alleles are associated with age at diagnosis and clinical risk groups. Leukemia 19(1):44–48. doi:10.1038/sj.leu.2403553 PubMedGoogle Scholar
  57. 57.
    Dai L, Gast A, Horska A, Schrappe M, Bartram CR, Hemminki K, Kumar R, Bermejo JL (2009) A case-control study of childhood acute lymphoblastic leukaemia and polymorphisms in the TGF-beta and receptor genes. Pediatr Blood Cancer 52(7):819–823. doi:10.1002/pbc.21971 PubMedCrossRefGoogle Scholar
  58. 58.
    Seidemann K, Zimmermann M, Book M, Meyer U, Burkhardt B, Welte K, Reiter A, Stanulla M (2005) Tumor necrosis factor and lymphotoxin alfa genetic polymorphisms and outcome in pediatric patients with non-Hodgkin’s lymphoma: results from Berlin-Frankfurt-Munster Trial NHL-BFM 95. J Clin Oncol 23(33):8414–8421. doi:10.1200/JCO.2005.01.2179 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Verena Wiegering
    • 1
  • Matthias Eyrich
    • 1
  • Stefan Rutkowski
    • 1
    • 2
  • Matthias Wölfl
    • 1
  • Paul G. Schlegel
    • 1
  • Beate Winkler
    • 1
  1. 1.Department of Pediatric Hematology, Oncology and Neurooncology, Pediatric Stem Cell Transplantation ProgramUniversity Children’s Hospital WürzburgWuerzburgGermany
  2. 2.Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations