Cancer Immunology, Immunotherapy

, Volume 60, Issue 4, pp 457–466 | Cite as

Monocyte-derived DC maturation strategies and related pathways: a transcriptional view

  • Luciano Castiello
  • Marianna Sabatino
  • Ping Jin
  • Carol Clayberger
  • Francesco M. Marincola
  • Alan M. Krensky
  • David F. Stroncek


Ex vivo production of highly stimulator mature dendritic cells (DCs) for cellular therapy has been used to treat different pathological conditions with the aim of inducing a specific immune response. In the last decade, several protocols have been developed to mature monocyte-derived DCs: each one has led to the generation of DCs showing different phenotypes and stimulatory abilities, but it is not yet known which one is the best for inducing effective immune responses. We grouped several different maturation protocols according to the downstream pathways they activated and reviewed the shared features at a transcriptomic level to reveal the potential of DCs matured by each protocol to develop Th-polarized immune responses.


Dendritic cells Gene profiling Maturation Th polarization 



This work is supported by the Intramural Programs of the National Institutes of Health Clinical Center and National Cancer Institute.


  1. 1.
    Steinman RM, Banchereau J (2007) Taking Dendritic Cells into medicine. Nature 449:419–426PubMedCrossRefGoogle Scholar
  2. 2.
    Yang L, Carbone DP (2004) Tumor-host immune interactions and Dendritic Cell dysfunction. Adv Cancer Res 92:13–27PubMedCrossRefGoogle Scholar
  3. 3.
    Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237–245PubMedCrossRefGoogle Scholar
  4. 4.
    Mayordomo JI, Zorina T, Storkus WJ et al (1995) Bone marrow-derived Dendritic Cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1:1297–1302PubMedCrossRefGoogle Scholar
  5. 5.
    Hsu FJ, Benike C, Fagnoni F et al (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed Dendritic Cells. Nat Med 2:52–58PubMedCrossRefGoogle Scholar
  6. 6.
    Nestle FO, Alijagic S, Gilliet M et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed Dendritic Cells. Nat Med 4:328–332PubMedCrossRefGoogle Scholar
  7. 7.
    Kalinski P, Urban J, Narang R, Berk E, Wieckowski E, Muthuswamy R (2009) Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future Oncol 5:379–390PubMedCrossRefGoogle Scholar
  8. 8.
    Tuyaerts S, Aerts JL, Corthals J et al (2007) Current approaches in Dendritic Cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 56:1513–1537PubMedCrossRefGoogle Scholar
  9. 9.
    Engell-Noerregaard L, Hansen TH, Andersen MH, Straten P, Svane IM (2009) Review of clinical studies on Dendritic Cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58:1–14PubMedCrossRefGoogle Scholar
  10. 10.
    Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P (2008) Type 1-polarized Dendritic Cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol 84:319–325PubMedCrossRefGoogle Scholar
  11. 11.
    Giermasz AS, Urban JA, Nakamura Y et al (2009) Type-1 polarized Dendritic Cells primed for high IL-12 production show enhanced activity as cancer vaccines. Cancer Immunol Immunother 58:1329–1336PubMedCrossRefGoogle Scholar
  12. 12.
    Tang Z, Saltzman A (2004) Understanding human Dendritic Cell biology through gene profiling. Inflamm Res 53:424–441PubMedCrossRefGoogle Scholar
  13. 13.
    Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P (2008) Ability of mature Dendritic Cells to interact with regulatory T cells is imprinted during maturation. Cancer Res 68:5972–5978PubMedCrossRefGoogle Scholar
  14. 14.
    Messmer D, Messmer B, Chiorazzi N (2003) The global transcriptional maturation program and stimuli-specific gene expression profiles of human myeloid Dendritic Cells. Int Immunol 15:491–503PubMedCrossRefGoogle Scholar
  15. 15.
    Moller I, Michel K, Frech N et al (2008) Dendritic cell maturation with poly(I:C)-based versus PGE2-based cytokine combinations results in differential functional characteristics relevant to clinical application. J Immunother 31:506–519PubMedCrossRefGoogle Scholar
  16. 16.
    Kalinski P, Moser M (2005) Opinion—consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat Rev Immunol 5:251–260PubMedCrossRefGoogle Scholar
  17. 17.
    Jin P, Han TH, Ren J et al (2010) Molecular signatures of maturing Dendritic Cells: implications for testing the quality of Dendritic Cell therapies. J Transl Med 8:4PubMedCrossRefGoogle Scholar
  18. 18.
    Korthals M, Safaian N, Kronenwett R et al (2007) Monocyte derived Dendritic Cells generated by IFN-alpha acquire mature dendritic and natural killer cell properties as shown by gene expression analysis. J Transl Med 5:46PubMedCrossRefGoogle Scholar
  19. 19.
    Dohnal AM, Graffi S, Witt V et al (2009) Comparative evaluation of techniques for the manufacturing of Dendritic Cell-based cancer vaccines. J Cell Mol Med 13:125–135PubMedCrossRefGoogle Scholar
  20. 20.
    Arico E, Wang E, Tornesello ML et al (2005) Immature monocyte derived Dendritic Cells gene expression profile in response to virus-like particles stimulation. J Transl Med 3:45PubMedCrossRefGoogle Scholar
  21. 21.
    Baltathakis I, Alcantara O, Boldt DH (2001) Expression of different NF-kappaB pathway genes in Dendritic Cells (DCs) or macrophages assessed by gene expression profiling. J Cell Biochem 83:281–290PubMedCrossRefGoogle Scholar
  22. 22.
    Pereira SR, Faca VM, Gomes GG et al (2005) Changes in the proteomic profile during differentiation and maturation of human monocyte-derived Dendritic Cells stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 and lipopolysaccharide. Proteomics 5:1186–1198PubMedCrossRefGoogle Scholar
  23. 23.
    Matsunaga T, Ishida T, Takekawa M, Nishimura S, Adachi M, Imai K (2002) Analysis of gene expression during maturation of immature Dendritic Cells derived from peripheral blood monocytes. Scand J Immunol 56:593–601PubMedCrossRefGoogle Scholar
  24. 24.
    Shin JW, Jin P, Fan Y et al (2008) Evaluation of gene expression profiles of immature Dendritic Cells prepared from peripheral blood mononuclear cells. Transfusion 48:647–657PubMedCrossRefGoogle Scholar
  25. 25.
    Piqueras B, Connolly J, Freitas H, Palucka AK, Banchereau J (2006) Upon viral exposure, myeloid and plasmacytoid Dendritic Cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 107:2613–2618PubMedCrossRefGoogle Scholar
  26. 26.
    Hashimoto SI, Suzuki T, Nagai S, Yamashita T, Toyoda N, Matsushima K (2000) Identification of genes specifically expressed in human activated and mature Dendritic Cells through serial analysis of gene expression. Blood 96:2206–2214PubMedGoogle Scholar
  27. 27.
    Baltathakis I, Alcantara O, Boldt DH (2001) Expression of different NF-kappaB pathway genes in Dendritic Cells (DCs) or macrophages assessed by gene expression profiling. J Cell Biochem 83:281–290PubMedCrossRefGoogle Scholar
  28. 28.
    Duenas AI, Aceves M, Orduna A, Diaz R, Sanchez CM, Garcia-Rodriguez C (2006) Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptor 4 with much lower potency than E. coli LPS. Int Immunol 18:785–795PubMedCrossRefGoogle Scholar
  29. 29.
    Yoshikawa H, Kurokawa M, Ozaki N et al (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 146:116–123PubMedCrossRefGoogle Scholar
  30. 30.
    Vulcano M, Dusi S, Lissandrini D et al (2004) Toll receptor-mediated regulation of NADPH oxidase in human Dendritic Cells. J Immunol 173:5749–5756PubMedGoogle Scholar
  31. 31.
    Pivarcsi A, Gombert M, Dieu-Nosjean MC et al (2004) CC chemokine ligand 18, an atopic dermatitis-associated and Dendritic Cell-derived chemokine, is regulated by staphylococcal products and allergen exposure. J Immunol 173:5810–5817PubMedGoogle Scholar
  32. 32.
    Appay V, Rowland-Jones SL (2001) RANTES: a versatile and controversial chemokine. Trends Immunol 22:83–87PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang Y, Yoneyama H, Wang Y et al (2004) Mobilization of Dendritic Cell precursors into the circulation by administration of MIP-1alpha in mice. J Natl Cancer Inst 96:201–209PubMedCrossRefGoogle Scholar
  34. 34.
    Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426PubMedCrossRefGoogle Scholar
  35. 35.
    Schutyser E, Richmond A, Van Damme J (2005) Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol 78:14–26PubMedCrossRefGoogle Scholar
  36. 36.
    Mandal M, Borowski C, Palomero T et al (2005) The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival. J Exp Med 201:603–614PubMedCrossRefGoogle Scholar
  37. 37.
    Perera PY, Qureshi N, Christ WJ, Stutz P, Vogel SN (1998) Lipopolysaccharide and its analog antagonists display differential serum factor dependencies for induction of cytokine genes in murine macrophages. Infect Immun 66:2562–2569PubMedGoogle Scholar
  38. 38.
    Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y (2002) Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol 169:6408–6416PubMedGoogle Scholar
  39. 39.
    Hu X, Yee E, Harlan JM, Wong F, Karsan A (1998) Lipopolysaccharide induces the antiapoptotic molecules, A1 and A20, in microvascular endothelial cells. Blood 92:2759–2765PubMedGoogle Scholar
  40. 40.
    Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489PubMedGoogle Scholar
  41. 41.
    Wehrwein G, Neumeier M, Schaffler A et al (2006) Lipopolysaccharide regulated protein expression is only partly impaired in monocytes from patients with type I diabetes. Cardiovasc Diabetol 5:5PubMedCrossRefGoogle Scholar
  42. 42.
    El Shikh ME, El Sayed RM, Wu Y, Szakal AK, Tew JG (2007) TLR4 on follicular Dendritic Cells: an activation pathway that promotes accessory activity. J Immunol 179:4444–4450PubMedGoogle Scholar
  43. 43.
    Nikulina M, Habich C, Flohe SB, Scott FW, Kolb H (2004) Wheat gluten causes Dendritic Cell maturation and chemokine secretion. J Immunol 173:1925–1933PubMedGoogle Scholar
  44. 44.
    Sumagin R, Lomakina E, Sarelius IH (2008) Leukocyte-endothelial cell interactions are linked to vascular permeability via ICAM-1-mediated signaling. Am J Physiol Heart Circ Physiol 295:H969–H977PubMedCrossRefGoogle Scholar
  45. 45.
    Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74:324–329PubMedCrossRefGoogle Scholar
  46. 46.
    Tureci O, Bian H, Nestle FO et al (2003) Cascades of transcriptional induction during Dendritic Cell maturation revealed by genome-wide expression analysis. FASEB J 17:836–847PubMedCrossRefGoogle Scholar
  47. 47.
    Bleharski JR, Niazi KR, Sieling PA, Cheng G, Modlin RL (2001) Signaling lymphocytic activation molecule is expressed on CD40 ligand-activated Dendritic Cells and directly augments production of inflammatory cytokines. J Immunol 167:3174–3181PubMedGoogle Scholar
  48. 48.
    Lapteva N, Nieda M, Ando Y et al (2001) Expression of renin-angiotensin system genes in immature and mature Dendritic Cells identified using human cDNA microarray. Biochem Biophys Res Commun 285:1059–1065PubMedCrossRefGoogle Scholar
  49. 49.
    Le NF, Hohenkirk L, Grolleau A et al (2001) Profiling changes in gene expression during differentiation and maturation of monocyte-derived Dendritic Cells using both oligonucleotide microarrays and proteomics. J Biol Chem 276:17920–17931CrossRefGoogle Scholar
  50. 50.
    Ju XS, Hacker C, Madruga J et al (2003) Towards determining the differentiation program of antigen-presenting Dendritic Cells by transcriptional profiling. Eur J Cell Biol 82:75–86PubMedCrossRefGoogle Scholar
  51. 51.
    Cattaruzza M, Slodowski W, Stojakovic M, Krzesz R, Hecker M (2003) Interleukin-10 induction of nitric-oxide synthase expression attenuates CD40-mediated interleukin-12 synthesis in human endothelial cells. J Biol Chem 278:37874–37880PubMedCrossRefGoogle Scholar
  52. 52.
    Wang YC, Hu XB, He F et al (2009) Lipopolysaccharide-induced maturation of Bone Marrow-derived Dendritic Cells is regulated by Notch signaling through the up-regulation of CXCR4. J Biol Chem 284:15993–16003PubMedCrossRefGoogle Scholar
  53. 53.
    Satyam A, Khandpur S, Sharma VK, Sharma A (2009) Involvement of T(H)1/T(H)2 cytokines in the pathogenesis of autoimmune skin disease-pemphigus vulgaris. Immunol Invest 38:498–509PubMedCrossRefGoogle Scholar
  54. 54.
    Decker WK, Li S, Xing D et al (2008) Deficient T(H)-1 responses from TNF-alpha-matured and alpha-CD40-matured Dendritic Cells. J Immunother 31:157–165PubMedCrossRefGoogle Scholar
  55. 55.
    Severa M, Remoli ME, Giacomini E et al (2006) Differential responsiveness to IFN-alpha and IFN-beta of human mature DC through modulation of IFNAR expression. J Leukoc Biol 79:1286–1294PubMedCrossRefGoogle Scholar
  56. 56.
    Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic Cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52PubMedCrossRefGoogle Scholar
  57. 57.
    Santini SM, Lapenta C, Santodonato L, D’Agostino G, Belardelli F, Ferrantini M (2009) IFN-alpha in the generation of Dendritic Cells for cancer immunotherapy. Handb Exp Pharmacol 188:295–317PubMedCrossRefGoogle Scholar
  58. 58.
    Pan J, Zhang M, Wang J et al (2004) Interferon-gamma is an autocrine mediator for Dendritic Cell maturation. Immunol Lett 94:141–151PubMedCrossRefGoogle Scholar
  59. 59.
    Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ (2007) Polarized type-1 Dendritic Cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4 + T cell responses in vitro. J Immunother 30:75–82PubMedCrossRefGoogle Scholar
  60. 60.
    Nagai T, Devergne O, Mueller TF, Perkins DL, van Seventer JM, van Seventer GA (2003) Timing of IFN-beta exposure during human Dendritic Cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J Immunol 171:5233–5243PubMedGoogle Scholar
  61. 61.
    Severa M, Remoli ME, Giacomini E et al (2007) Sensitization to TLR7 agonist in IFN-beta-preactivated Dendritic Cells. J Immunol 178:6208–6216PubMedGoogle Scholar
  62. 62.
    Schlaak JF, Hilkens CM, Costa-Pereira AP et al (2002) Cell-type and donor-specific transcriptional responses to interferon-alpha. Use of customized gene arrays. J Biol Chem 277:49428–49437PubMedCrossRefGoogle Scholar
  63. 63.
    Wang E, Worschech A, Marincola FM (2008) The immunologic constant of rejection. Trends Immunol 29:256–262PubMedCrossRefGoogle Scholar
  64. 64.
    Worschech A, Chen N, Yu YA et al (2009) Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics 10:301PubMedCrossRefGoogle Scholar
  65. 65.
    Longhi MP, Trumpfheller C, Idoyaga J et al (2009) Dendritic Cells require a systemic type I interferon response to mature and induce CD4 + Th1 immunity with poly IC as adjuvant. J Exp Med 206:1589–1602PubMedCrossRefGoogle Scholar
  66. 66.
    Stroncek DF, Basil C, Nagorsen D et al (2005) Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms. J Transl Med 3:24PubMedCrossRefGoogle Scholar
  67. 67.
    Longman RS, Braun D, Pellegrini S, Rice CM, Darnell RB, Albert ML (2007) Dendritic-cell maturation alters intracellular signaling networks, enabling differential effects of IFN-alpha/beta on antigen cross-presentation. Blood 109:1113–1122PubMedCrossRefGoogle Scholar
  68. 68.
    Lee AW, Truong T, Bickham K et al (2002) A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived Dendritic Cells: implications for immunotherapy. Vaccine 20(Suppl 4):A8–A22PubMedCrossRefGoogle Scholar
  69. 69.
    Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41:2502–2512PubMedCrossRefGoogle Scholar
  70. 70.
    Spisek R, Bretaudeau L, Barbieux I, Meflah K, Gregoire M (2001) Standardized generation of fully mature p70 IL-12 secreting monocyte-derived Dendritic Cells for clinical use. Cancer Immunol Immunother 50:417–427PubMedCrossRefGoogle Scholar
  71. 71.
    Colic M, Mojsilovic S, Pavlovic B et al (2004) Comparison of two different protocols for the induction of maturation of human Dendritic Cells in vitro. Vojnosanit Pregl 61:471–478PubMedCrossRefGoogle Scholar
  72. 72.
    Liu W, Kelly KA (2008) Prostaglandin E-2 modulates Dendritic Cell function during chlamydial genital infection. Immunology 123:290–303PubMedGoogle Scholar
  73. 73.
    Kyte JA, Mu L, Aamdal S et al (2006) Phase I/II trial of melanoma therapy with Dendritic Cells transfected with autologous tumor-mRNA. Cancer Gene Ther 13:905–918PubMedCrossRefGoogle Scholar
  74. 74.
    Kyte JA, Trachsel S, Risberg B, Straten PT, Lislerud K, Gaudernack G (2009) Unconventional cytokine profiles and development of T cell memory in long-term survivors after cancer vaccination. Cancer Immunol Immunother 58:1609–1626PubMedCrossRefGoogle Scholar
  75. 75.
    Soleimani A, Berntsen A, Svane IM, Pedersen AE (2009) Immune responses in patients with metastatic renal cell carcinoma treated with Dendritic Cells pulsed with tumor lysate. Scand J Immunol 70:481–489PubMedCrossRefGoogle Scholar
  76. 76.
    Schuurhuis DH, Lesterhuis WJ, Kramer M et al (2009) Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade Dendritic Cells. Cancer Immunol Immunother 58:1109–1115PubMedCrossRefGoogle Scholar
  77. 77.
    Felzmann T, Huttner KG, Breuer SK et al (2005) Semi-mature IL-12 secreting Dendritic Cells present exogenous antigen to trigger cytolytic immune responses. Cancer Immunol Immunother 54:769–780PubMedCrossRefGoogle Scholar
  78. 78.
    Wang E, Monaco A, Monsurro V et al (2009) Antitumor vaccines, immunotherapy and the immunological constant of rejection. IDrugs 12:297–301PubMedGoogle Scholar
  79. 79.
    Jongmans W, Tiemessen DM, van Vlodrop IJH, Mulders PF, Oosterwijk E (2005) Th1-polarizing capacity of clinical-grade Dendritic Cells is triggered by Ribomunyl but is compromised by PGE2: the importance of maturation cocktails. J Immunother 28:480–487PubMedCrossRefGoogle Scholar
  80. 80.
    Weck MM, Grunebach F, Werth D, Sinzger C, Bringmann A, Brossart P (2007) TLR ligands differentially affect uptake and presentation of cellular antigens. Blood 109:3890–3894PubMedCrossRefGoogle Scholar
  81. 81.
    Hokey DA, Larregina AT, Erdos G, Watkins SC, Falo LD Jr (2005) Tumor cell loaded type-1 polarized Dendritic Cells induce Th1-mediated tumor immunity. Cancer Res 65:10059–10067PubMedCrossRefGoogle Scholar
  82. 82.
    Kalinski P, Vieira PL, Schuitemaker JH, de Jong EC, Kapsenberg ML (2001) Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97:3466–3469PubMedCrossRefGoogle Scholar
  83. 83.
    Hashimoto SI, Suzuki T, Nagai S, Yamashita T, Toyoda N, Matsushima K (2000) Identification of genes specifically expressed in human activated and mature Dendritic Cells through serial analysis of gene expression. Blood 96:2206–2214PubMedGoogle Scholar
  84. 84.
    Baltathakis I, Alcantara O, Boldt DH (2001) Expression of different NF-kappaB pathway genes in Dendritic Cells (DCs) or macrophages assessed by gene expression profiling. J Cell Biochem 83:281–290PubMedCrossRefGoogle Scholar
  85. 85.
    Ju XS, Hacker C, Madruga J et al (2003) Towards determining the differentiation program of antigen-presenting Dendritic Cells by transcriptional profiling. Eur J Cell Biol 82:75–86PubMedCrossRefGoogle Scholar
  86. 86.
    Schlaak JF, Hilkens CM, Costa-Pereira AP et al (2002) Cell-type and donor-specific transcriptional responses to interferon-alpha. Use of customized gene arrays. J Biol Chem 277:49428–49437PubMedCrossRefGoogle Scholar
  87. 87.
    Moschella F, Maffei A, Catanzaro RP et al (2001) Transcript profiling of human Dendritic Cells maturation-induced under defined culture conditions: comparison of the effects of tumour necrosis factor alpha, soluble CD40 ligand trimer and interferon gamma. Br J Haematol 114:444–457PubMedCrossRefGoogle Scholar
  88. 88.
    Dietz AB, Bulur PA, Knutson GJ, Matasic R, Vuk-Pavlovic S (2000) Maturation of human monocyte-derived Dendritic Cells studied by microarray hybridization. Biochem Biophys Res Commun 275:731–738PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Luciano Castiello
    • 1
  • Marianna Sabatino
    • 1
  • Ping Jin
    • 1
  • Carol Clayberger
    • 2
  • Francesco M. Marincola
    • 3
  • Alan M. Krensky
    • 2
  • David F. Stroncek
    • 1
  1. 1.Cell Processing Section, Department of Transfusion Medicine, Clinical CenterNational Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Cellular and Molecular Biology, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, and Center for Human Immunology (CHI)National Institutes of HealthBethesdaUSA

Personalised recommendations