Cancer Immunology, Immunotherapy

, Volume 60, Issue 4, pp 479–485 | Cite as

Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay

  • Stefania Pacini
  • Gabriele Morucci
  • Tiziana Punzi
  • Massimo Gulisano
  • Marco RuggieroEmail author
Original article


The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3′-5′-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E1- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.


GcMAF cAMP Angiogenesis Peripheral blood human mononuclear cells 



This research project has been subsidized by the University of Firenze (Progetti di Ricerca di Ateneo, ex 60%) and by the Italian Ministry of Health (Progetto Strategico “La Medicina di genere come obiettivo strategico per la sanità pubblica: l’appropriatezza della cura per la tutela della salute della donna”). We are indebted with Prof. N. Yamamoto for providing GcMAF and inspiring discussion.


  1. 1.
    Yamamoto N, Naraparaju VR (1997) Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor. Cancer Res 47:2187–2192Google Scholar
  2. 2.
    Nagasawa H, Uto Y, Sasaki H, Okamura N, Murakami A, Kubo S, Kirk KL, Hori H (2005) Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. Anticancer Res 25:3689–3695PubMedGoogle Scholar
  3. 3.
    Yamamoto N, Naraparaju VR, Urade M (1997) Prognostic utility of serum alpha-N-acetylgalactosaminidase and immunosuppression resulted from deglycosylation of serum Gc protein in oral cancer patients. Cancer Res 57:295–299PubMedGoogle Scholar
  4. 4.
    Kanda S, Mochizuki Y, Miyata Y, Kanetake H, Yamamoto N (2002) Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis. J Natl Cancer Inst 94:1311–1319PubMedGoogle Scholar
  5. 5.
    Kisker O, Onizuka S, Becker CM, Fannon M, Flynn E, D’Amato R, Zetter B, Folkman J, Ray R, Swamy N, Pirie-Shepherd S (2003) Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia 5:32–40PubMedGoogle Scholar
  6. 6.
    Kalkunte S, Brard L, Granai CO, Swamy N (2005) Inhibition of angiogenesis by vitamin D-binding protein: characterization of anti-endothelial activity of DBP-maf. Angiogenesis 8:349–360PubMedCrossRefGoogle Scholar
  7. 7.
    Nonaka K, Onizuka S, Ishibashi H, Uto Y, Hori H, Nakayama T, Matsuura N, Kanematsu T, Fujioka H (2010) Vitamin D binding protein-macrophage activating factor inhibits HCC in SCID mice. J Surg Res Sep 18 [Epub ahead of print]Google Scholar
  8. 8.
    Iida S, Yamamoto K, Irimura T (1999) Interaction of human macrophage C-type lectin with O-linked N-acetylgalactosamine residues on mucin glycopeptides. J Biol Chem 274:10697–10705PubMedCrossRefGoogle Scholar
  9. 9.
    W81XWH-04-1-0010. Treatment of prostate cancer with a DBP-MAF-vitamin D complex to target angiogenesis and tumorigenesis. Michael W. Fannon, Ph.D. University of Kentucky Research Foundation Lexington, Kentucky 40506-0057. U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012. (Approved for Public Release; Distribution Unlimited)Google Scholar
  10. 10.
    Tsopanoglou NE, Haralabopoulos GC, Maragoudakis ME (1994) Opposing effects on modulation of angiogenesis by protein kinase C and cAMP-mediated pathways. J Vasc Res 31:195–204PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto N, Ushijima N, Koga Y (2009) Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF). J Med Virol 81:16–26PubMedCrossRefGoogle Scholar
  12. 12.
    Link RP, Perlman KL, Pierce EA, Schnoes HK, DeLuca HF (1986) Purification of human serum vitamin D-binding protein by 25-hydroxyvitamin D3-Sepharose chromatography. Anal Biochem 157:262–269PubMedCrossRefGoogle Scholar
  13. 13.
    Yamamoto N, Kumashiro R (1993) Conversion of vitamin D3 binding protein (Group-specific component) to a macrophage activating factor by the stepwise action of β-galactosidase of B cells and sialidase of T cells. J Immun 151:2794–2902PubMedGoogle Scholar
  14. 14.
    Naraparaju VR, Yamamoto N (1994) Roles of beta-galactosidase of B lymphocytes and sialidase of T lymphocytes in inflammation-primed activation of macrophages. Immunol Lett 43:143–148PubMedCrossRefGoogle Scholar
  15. 15.
    Yamamoto N (1996) Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production. Mol Immunol 33:1157–1164PubMedCrossRefGoogle Scholar
  16. 16.
    Hayon T, Dvilanski A, Shpilberg O, Nathan I (2003) Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia. Leuk Lymphome 44:1957–1962CrossRefGoogle Scholar
  17. 17.
    Pacini S, Punzi T, Morucci G, Gulisano M, Ruggiero M (2009) A paradox of cadmium: a carcinogen that impairs the capability of human breast cancer cells to induce angiogenesis. J Environ Pathol Toxicol Oncol 28:85–88PubMedGoogle Scholar
  18. 18.
    Sharma S, Ghoddoussi M, Gao P, Kelloff GJ, Steele VE, Kopelovich L (2001) A quantitative angiogenesis model for efficacy testing of chemopreventive agents. Anticancer Res 21:3829–3837PubMedGoogle Scholar
  19. 19.
    Santos-Alvarez J, Goberna R, Sánchez-Margalet V (1999) Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol 194:6–11PubMedCrossRefGoogle Scholar
  20. 20.
    Vannucchi S, Pasquali F, Chiarugi VP, Ruggiero M (1991) Heparin inhibits A431 cell growth independently of serum and EGF mitogenic signalling. FEBS Lett 281:141–144PubMedCrossRefGoogle Scholar
  21. 21.
    Cavari S, Ruggiero M, Vannucchi S (1993) Antiproliferative effects of heparin on normal and transformed NIH/3T3 fibroblasts. Cell Biol Int 17:781–786PubMedCrossRefGoogle Scholar
  22. 22.
    Lulli M, Di Gesualdo F, Witort E et al. (2010) Cell death: physiopathological and therapeutic implications. Cell Death Dis. doi: 10.1038/cddis.2010.8
  23. 23.
    Takahashi HK, Liu K, Wake H, Mori S, Zhang J, Liu R, Yoshino T, Nishibori M (2009) Prostaglandin E2 inhibits advanced glycation end product-induced adhesion molecule expression, cytokine production, and lymphocyte proliferation in human peripheral blood mononuclear cells. J Pharmacol Exp Ther 331:656–670PubMedCrossRefGoogle Scholar
  24. 24.
    Giles FJ (2002) The emerging role of angiogenesis inhibitors in hematologic malignancies. Oncology 16:23–29PubMedGoogle Scholar
  25. 25.
    Senchina DS, Shah NB, Doty DM, Sanderson CR, Hallam JE (2009) Herbal supplements and athlete immune function—what’s proven, disproven, and unproven? Exerc Immunol Rev 15:66–106PubMedGoogle Scholar
  26. 26.
    Yamamoto N, Naraparaju VR, Moore M, Brent LH (1997) Deglycosylation of serum vitamin D3-binding protein by alpha-N-acetylgalactosaminidase detected in the plasma of patients with systemic lupus erythematosus. Clin Immunol Immunopathol 82:290–298PubMedCrossRefGoogle Scholar
  27. 27.
    Yamamoto N, Suyama H, Yamamoto N (2008) Immunotherapy for prostate cancer with Gc protein-derived macrophage-activating factor, GcMAF. Transl Oncol 1:65–72PubMedGoogle Scholar
  28. 28.
    Yamamoto N, Suyama H, Nakazato H, Yamamoto N, Koga Y (2008) Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF. Cancer Immunol Immunother 57:1007–1016PubMedCrossRefGoogle Scholar
  29. 29.
    Yamamoto N, Suyama H, Yamamoto N, Ushijima N (2008) Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF). Int J Cancer 122:461–467PubMedCrossRefGoogle Scholar
  30. 30.
    Yamamoto N, Naraparaju VR, Asbell SO (1996) Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Cancer Res 56:2827–2831PubMedGoogle Scholar
  31. 31.
    Greco M, Mitri MD, Chiriacò F, Leo G, Brienza E, Maffia M (2009) Serum proteomic profile of cutaneous malignant melanoma and relation to cancer progression: association to tumor derived alpha-N-acetylgalactosaminidase activity. Cancer Lett 283:222–229PubMedCrossRefGoogle Scholar
  32. 32.
    Panova-Noeva M, Falanga A (2010) Treatment of thromboembolism in cancer patients. Expert Opin Pharmacother 11:2049–2058PubMedCrossRefGoogle Scholar
  33. 33.
    Cao Y (2010) Angiogenesis: what can it offer for future medicine? Exp Cell Res 316:1304–1308PubMedCrossRefGoogle Scholar
  34. 34.
    Rusnati M, Presta M (2002) HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5:141–151PubMedCrossRefGoogle Scholar
  35. 35.
    Ribatti D (2008) Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Biol 270:181–224PubMedCrossRefGoogle Scholar
  36. 36.
    Ribatti D (2010) The chick embryo chorioallantoic membrane as an in vivo assay to study antiangiogenesis. Pharmaceuticals 3:482–513CrossRefGoogle Scholar
  37. 37. Accessed 08 October 2010
  38. 38.
  39. 39. Accessed 08 October 2010

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stefania Pacini
    • 1
  • Gabriele Morucci
    • 1
  • Tiziana Punzi
    • 1
  • Massimo Gulisano
    • 1
  • Marco Ruggiero
    • 2
  1. 1.Department of Anatomy, Histology and Forensic MedicineUniversity of FirenzeFlorenceItaly
  2. 2.Department of Experimental Pathology and OncologyUniversity of FirenzeFlorenceItaly

Personalised recommendations