Cancer Immunology, Immunotherapy

, Volume 60, Issue 2, pp 153–160 | Cite as

Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model

  • Wim Maes
  • Stefaan W. Van GoolEmail author


Nearly twenty years of experimental immunotherapy for malignant glioma yielded important insights in the mechanisms governing glioma immunology. Still considered promising, it is clear that immunotherapy does not on its own represent the magic bullet in glioma therapy. In this review, we summarize the major immunotherapeutic achievements in the mouse GL261 glioma model, which has emerged as the gold standard syngeneic model for experimental glioma therapy. Gene therapy, monoclonal antibody treatment, cytokine therapy, cell transfer strategies and dendritic cell therapy were hereby considered. Apart from the considerable progress made in understanding glioma immunology in this model, we also addressed its most pertinent issues and shortcomings. Despite these, the GL261 model will remain indispensable in glioma research since it is a fast, highly reproducible and easy-to-establish model system.


GL261 Malignant glioma Orthotopic mouse brain tumor Immunotherapy Immune modulation 



This work has been supported by the Olivia Hendrickx Research Fund ( Support was also obtained from Electrabel Netmanagement Vlaanderen, CAF Belgium, Baxter, the Herman Memorial Research Fund (, the James E. Kearney Memorial Fund and gifts from private families and service clubs.

Supplementary material

262_2010_946_MOESM1_ESM.pdf (340 kb)
Supplementary material 1 (PDF 340 kb)


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefPubMedGoogle Scholar
  2. 2.
    Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4(4):278–299PubMedGoogle Scholar
  3. 3.
    Nieder C, Grosu AL, Molls M (2000) A comparison of treatment results for recurrent malignant gliomas. Cancer Treat Rev 26(6):397–409CrossRefPubMedGoogle Scholar
  4. 4.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoom MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Eng J Med 352:987–996CrossRefGoogle Scholar
  5. 5.
    Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752CrossRefPubMedGoogle Scholar
  6. 6.
    Aghi M, Chiocca EA (2006) Gene therapy for glioblastoma. Neurosurg Focus 20(4):E18PubMedGoogle Scholar
  7. 7.
    Mason WP (2008) Emerging drugs for malignant glioma. Expert Opin Emerg Drugs 13(1):81–94CrossRefPubMedGoogle Scholar
  8. 8.
    Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24(8):1253–1265CrossRefPubMedGoogle Scholar
  9. 9.
    Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85(2):133–148CrossRefPubMedGoogle Scholar
  10. 10.
    Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12(18):5288–5297CrossRefPubMedGoogle Scholar
  11. 11.
    Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15(1):110–116CrossRefPubMedGoogle Scholar
  12. 12.
    Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30(9):2394–2400PubMedGoogle Scholar
  13. 13.
    Zimmerman HM, Arnold H (1941) Experimental brain tumors. I. Tumors produced with methylcholanthrene. Cancer Res 1:919–938Google Scholar
  14. 14.
    Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553CrossRefPubMedGoogle Scholar
  15. 15.
    Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A et al (2007) Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 121(8):1756–1763CrossRefPubMedGoogle Scholar
  16. 16.
    Segal BM, Glass DD, Shevach EM (2002) Cutting edge: IL-10-producing CD4+ T cells mediate tumor rejection. J Immunol 168(1):1–4PubMedGoogle Scholar
  17. 17.
    Iizuka Y, Kojima H, Kobata T, Kawase T, Kawakami Y, Toda M (2006) Identification of a glioma antigen, GARC-1, using cytotoxic T lymphocytes induced by HSV cancer vaccine. Int J Cancer 118(4):942–949CrossRefPubMedGoogle Scholar
  18. 18.
    Paul AK, Ciesielski MJ, Sajjad M, Wang X, Ferrone S, Abdel-Nabi H et al (2009) Expression of HMP/AN2, a melanoma associated antigen, in murine cerebral gliomas: potential for radioimmunotargeting. J Neurooncol 94(1):21–30CrossRefPubMedGoogle Scholar
  19. 19.
    Ciesielski MJ, Kozbor D, Castanaro CA, Barone TA, Fenstermaker RA (2008) Therapeutic effect of a T helper cell supported CTL response induced by a survivin peptide vaccine against murine cerebral glioma. Cancer Immunol Immunother 57(12):1827–1835CrossRefPubMedGoogle Scholar
  20. 20.
    Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW et al (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122(8):1794–1802CrossRefPubMedGoogle Scholar
  21. 21.
    Maes W, Deroose C, Reumers V, Krylyshkina O, Gijsbers R, Baekelandt V et al (2009) In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma. J Neurooncol 91(2):127–139CrossRefPubMedGoogle Scholar
  22. 22.
    Saris SC, Spiess P, Lieberman DM, Lin S, Walbridge S, Oldfield EH (1992) Treatment of murine primary brain tumors with systemic interleukin-2 and tumor-infiltrating lymphocytes. J Neurosurg 76(3):513–519CrossRefPubMedGoogle Scholar
  23. 23.
    Plautz GE, Touhalisky JE, Shu S (1997) Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 178(2):101–107CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R et al (2001) Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res 61(5):2031–2037PubMedGoogle Scholar
  25. 25.
    Kjaergaard J, Tanaka J, Kim JA, Rothchild K, Weinberg A, Shu S (2000) Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res 60(19):5514–5521PubMedGoogle Scholar
  26. 26.
    Kjaergaard J, Wang LX, Kuriyama H, Shu S, Plautz GE (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103(1):156–164CrossRefPubMedGoogle Scholar
  27. 27.
    Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167CrossRefPubMedGoogle Scholar
  28. 28.
    El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+ CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437CrossRefPubMedGoogle Scholar
  29. 29.
    Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, Ceuppens JL et al (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11(5):529–542CrossRefPubMedGoogle Scholar
  30. 30.
    Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15(21):6551–6559CrossRefPubMedGoogle Scholar
  31. 31.
    Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306CrossRefPubMedGoogle Scholar
  32. 32.
    Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715CrossRefPubMedGoogle Scholar
  33. 33.
    Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51(1):1–9CrossRefPubMedGoogle Scholar
  34. 34.
    Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T et al (2001) Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 50(9):463–468CrossRefPubMedGoogle Scholar
  35. 35.
    Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M (2002) A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 22(2A):613–621PubMedGoogle Scholar
  36. 36.
    Saito R, Mizuno M, Nakahara N, Tsuno T, Kumabe T, Yoshimoto T et al (2004) Vaccination with tumor cell lysate-pulsed dendritic cells augments the effect of IFN-beta gene therapy for malignant glioma in an experimental mouse intracranial glioma. Int J Cancer 111(5):777–782CrossRefPubMedGoogle Scholar
  37. 37.
    Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle WK, Dusak JE, Okada K (2004) Sequential delivery of interferon-alpha gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Ther 11(21):1551–1558CrossRefPubMedGoogle Scholar
  38. 38.
    Kuwashima N, Nishimura F, Eguchi J, Sato H, Hatano M, Tsugawa T et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740PubMedGoogle Scholar
  39. 39.
    Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66(21):10247–10252CrossRefPubMedGoogle Scholar
  40. 40.
    Pellegatta S, Poliani PL, Corno D, Grisoli M, Cusimano M, Ubiali F et al (2006) Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 28(5):527–531CrossRefPubMedGoogle Scholar
  41. 41.
    Jiang XB, Lu XL, Hu P, Liu RE (2009) Improved therapeutic efficacy using vaccination with glioma lysate-pulsed dendritic cells combined with IP-10 in murine glioma. Vaccine 27(44):6210–6216CrossRefPubMedGoogle Scholar
  42. 42.
    Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491PubMedGoogle Scholar
  43. 43.
    Ciesielski MJ, Apfel L, Barone TA, Castro CA, Weiss TC, Fenstermaker RA (2006) Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas. Cancer Immunol Immunother 55(12):1491–1503CrossRefPubMedGoogle Scholar
  44. 44.
    Ciesielski MJ, Ahluwalia MS, Munich SA, Orton M, Barone T, Chanan-Khan A et al (2010) Antitumor cytotoxic T-cell response induced by a survivin peptide mimic. Cancer Immunol Immunother 59(8):1211–1221CrossRefPubMedGoogle Scholar
  45. 45.
    Fujita M, Zhu X, Ueda R, Sasaki K, Kohanbash G, Kastenhuber ER et al (2009) Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Cancer Res 69(4):1587–1595CrossRefPubMedGoogle Scholar
  46. 46.
    Lichtor T, Glick RP, Kim TS, Hand R, Cohen EP (1995) Prolonged survival of mice with glioma injected intracerebrally with double cytokine-secreting cells. J Neurosurg 83(6):1038–1044CrossRefPubMedGoogle Scholar
  47. 47.
    Glick RP, Lichtor T, Panchal R, Mahendra A, Cohen EP (2003) Treatment with allogeneic interleukin-2 secreting fibroblasts protects against the development of malignant brain tumors. J Neurooncol 64(1–2):139–146PubMedGoogle Scholar
  48. 48.
    Spagnolo A, Glick RP, Lin H, Cohen EP, Feinstein DL, Lichtor T (2007) Prolonged survival of mice with established intracerebral glioma receiving combined treatment with peroxisome proliferator-activated receptor-gamma thiazolidinedione agonists and interleukin-2-secreting syngeneic/allogeneic fibroblasts. J Neurosurg 106(2):299–305CrossRefPubMedGoogle Scholar
  49. 49.
    Herrlinger U, Kramm CM, Johnston KM, Louis DN, Finkelstein D, Reznikoff G et al (1997) Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 4(6):345–352PubMedGoogle Scholar
  50. 50.
    Herrlinger U, Jacobs A, Quinones A, Woiciechowsky C, Sena-Esteves M, Rainov NG et al (2000) Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma. Hum Gene Ther 11(10):1429–1438CrossRefPubMedGoogle Scholar
  51. 51.
    Yu JS, Burwick JA, Dranoff G, Breakefield XO (1997) Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 8(9):1065–1072CrossRefPubMedGoogle Scholar
  52. 52.
    Newcomb EW, Demaria S, Lukyanov Y, Shao Y, Schnee T, Kawashima N et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12(15):4730–4737CrossRefPubMedGoogle Scholar
  53. 53.
    Natsume A, Mizuno M, Ryuke Y, Yoshida J (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther 6(9):1626–1633CrossRefPubMedGoogle Scholar
  54. 54.
    Natsume A, Tsujimura K, Mizuno M, Takahashi T, Yoshida J (2000) IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. J Neurooncol 47(2):117–124CrossRefPubMedGoogle Scholar
  55. 55.
    Blaszczyk-Thurin M, Ertl IO, Ertl HC (2002) An experimental vaccine expressing wild-type p53 induces protective immunity against glioblastoma cells with high levels of endogenous p53. Scand J Immunol 56(4):361–375CrossRefPubMedGoogle Scholar
  56. 56.
    Wu A, Oh S, Ericson K, Demorest ZL, Vengco I, Gharagozlou S (2007) Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma. Cancer Gene Ther 14(6):550–560CrossRefPubMedGoogle Scholar
  57. 57.
    Sonabend AM, Velicu S, Ulasov IV, Han Y, Tyler B, Brem H et al (2008) A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 19(2):133–142CrossRefPubMedGoogle Scholar
  58. 58.
    Vetter M, Hofer MJ, Roth E, Pircher HP, Pagenstecher A (2009) Intracerebral interleukin 12 induces glioma rejection in the brain predominantly by CD8+ T cells and independently of interferon-gamma. J Neuropathol Exp Neurol 68(5):525–534CrossRefPubMedGoogle Scholar
  59. 59.
    Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R et al (2009) TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 16(2):149–160CrossRefPubMedGoogle Scholar
  60. 60.
    El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54(6):526–535CrossRefPubMedGoogle Scholar
  61. 61.
    Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S et al (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181(10):6720–6729PubMedGoogle Scholar
  62. 62.
    Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J et al (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10CrossRefPubMedGoogle Scholar
  63. 63.
    Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10(a):133–146PubMedGoogle Scholar
  64. 64.
    Fujita M, Zhu X, Sasaki K, Ueda R, Low KL, Pollack IF et al (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180(4):2089–2098PubMedGoogle Scholar
  65. 65.
    Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57(13):1458–1467CrossRefPubMedGoogle Scholar
  66. 66.
    De Vleeschouwer S, Rapp M, Sorg RV, Steiger HJ, Stummer W, Van Gool S et al (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59(5):988–999PubMedGoogle Scholar
  67. 67.
    Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45(2):141–157CrossRefPubMedGoogle Scholar
  68. 68.
    June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117(6):1466–1476CrossRefPubMedGoogle Scholar
  69. 69.
    Bigner DD, Brown M, Coleman RE, Friedman AH, Friedman HS, McLendon RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′)2—a preliminary report. J Neurooncol 24(1):109–122CrossRefPubMedGoogle Scholar
  70. 70.
    Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD (2004) Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther 4(9):1453–1471CrossRefPubMedGoogle Scholar
  71. 71.
    Parajuli P, Sloan AE (2004) Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest 22(3):405–416CrossRefPubMedGoogle Scholar
  72. 72.
    Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964CrossRefPubMedGoogle Scholar
  73. 73.
    De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J et al (2008) Clinical experience of postoperative adjuvant dendritic cell-based immunotherapy in a large group of patients with relapsed glioblastoma multiforme. Clin Cancer Res 14(10):3098–3104CrossRefPubMedGoogle Scholar
  74. 74.
    Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G et al (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99(2):261–272CrossRefPubMedGoogle Scholar
  75. 75.
    Rainov NG, Ren H (2003) Gene therapy for human malignant brain tumors. Cancer J 9(3):180–188CrossRefPubMedGoogle Scholar
  76. 76.
    Andersen MH, Sorensen RB, Schrama D, Svane IM, Becker JC, Thor SP (2008) Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother 57(11):1735–1743CrossRefPubMedGoogle Scholar
  77. 77.
    Kim TG, Kim CH, Park JS, Park SD, Kim CK, Chung DS et al (2010) Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol 17(1):143–153CrossRefPubMedGoogle Scholar
  78. 78.
    Liu G, Black KL, Yu JS (2006) Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 5(2):233–247CrossRefPubMedGoogle Scholar
  79. 79.
    Schlegel PG, Eyrich M, Kramm C, Van Gool S (2010) Tumor vaccination for high-grade glioma. Pediatr Blood Cancer 55(7):1437CrossRefPubMedGoogle Scholar
  80. 80.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648CrossRefPubMedGoogle Scholar
  81. 81.
    Lichtor T, Glick RP, Tarlock K, Moffett S, Mouw E, Cohen EP (2002) Application of interleukin-2-secreting syngeneic/allogeneic fibroblasts in the treatment of primary and metastatic brain tumors. Cancer Gene Ther 9(5):464–469CrossRefPubMedGoogle Scholar
  82. 82.
    Herrlinger U, Aulwurm S, Strik H, Weit S, Naumann U, Weller M (2004) MIP-1alpha antagonizes the effect of a GM-CSF-enhanced subcutaneous vaccine in a mouse glioma model. J Neurooncol 66(1–2):147–154CrossRefPubMedGoogle Scholar
  83. 83.
    Smith KE, Janelidze S, Visse E, Badn W, Salford L, Siesjo P et al (2007) Synergism between GM-CSF and IFNgamma: enhanced immunotherapy in mice with glioma. Int J Cancer 120(1):75–80CrossRefPubMedGoogle Scholar
  84. 84.
    Smith KE, Fritzell S, Badn W, Eberstal S, Janelidze S, Visse E (2009) Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 124(3):630–637CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratory of Experimental Immunology (WM and SWVG), Pediatric Hemato-oncology (SWVG)University Hospital LeuvenLeuvenBelgium

Personalised recommendations