Cancer Immunology, Immunotherapy

, Volume 59, Issue 11, pp 1739–1744 | Cite as

Allogeneic natural killer cells for refractory lymphoma

  • Veronika Bachanova
  • Linda J. Burns
  • David H. McKenna
  • Julie Curtsinger
  • Angela Panoskaltsis-Mortari
  • Bruce R. Lindgren
  • Sarah Cooley
  • Daniel Weisdorf
  • Jeffrey S. Miller
Short communication


We reported that IL-2 activated autologous NK cells can induce, but not maintain durable remissions in lymphoma patients. We hypothesized that allogeneic NK cells may overcome class I MHC-mediated inhibition of NK cell killing. In a pilot study, we evaluated infusion of haploidentical donor NK cells for antitumor efficacy. Six patients with advanced B cell non-Hodgkin lymphoma (NHL) received rituximab, cyclophosphamide, and fludarabine as immunosupression to permit homeostatic NK cell expansion, followed by CD3-depleted NK cell-enriched cell products followed by subcutaneous IL-2 administration (10 × 106 units every other day × 6 doses). At 2 months, four patients showed an objective clinical response. We observed early donor cell persistence in two patients (blood and in tumor-bearing node), but this was not detectable beyond 7 days. All patients demonstrated substantial increases in host-regulatory T cells (Treg) after NK cell and IL-2 therapy (180 ± 80 cells/µl vs. baseline: 58 ± 24 cells/µl, p = 0.04) which may have limited donor cell expansion in vivo. These findings suggest safety and feasibility of allogeneic NK cell therapy in patients with lymphoma; however host Treg and inadequate immunodepletion may contribute to a hostile milieu for NK cell survival and expansion. Cell therapy trials should incorporate novel strategies to limit Treg expansion.


Allogeneic NK cells Adoptive cell therapy Lymphoma 



The clinical trial was supported in part by a gift from the patient advocate group, CLL Topics, Inc. The authors declare they have no conflict of interest. We would like to thank our dedicated research staff, nurse practitioner Megan Whitmore, research nurses Dixie Lewis and Roby Nicklow and clinical trial office staff, Jill Aughey, for their outstanding support and invaluable contributions in conducting the trial. We want to thank Michael Franklin and Carol Taubert for editorial assistance. We want to acknowledge the University of Minnesota Masonic Cancer Center Translational Therapy Core for their excellent assistance.


  1. 1.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Rimm AA, Ringden O, Rozman C, Speck B (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555–562PubMedGoogle Scholar
  2. 2.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100CrossRefPubMedGoogle Scholar
  3. 3.
    Novitzky N, Thomas V (2007) Allogeneic stem cell transplantation with T cell-depleted grafts for lymphoproliferative malignancies. Biol Blood Marrow Transplant 13:107–115CrossRefPubMedGoogle Scholar
  4. 4.
    Chalandon Y, Roosnek E, Mermillod B, Waelchli L, Helg C, Chapuis B (2006) Can only partial T-cell depletion of the graft before hematopoietic stem cell transplantation mitigate graft-versus-host disease while preserving a graft-versus-leukemia reaction? A prospective phase II study. Biol Blood Marrow Transplant 12:102–110CrossRefPubMedGoogle Scholar
  5. 5.
    Perales MA, Jenq R, Goldberg JD, Wilton AS, Lee SS, Castro-Malaspina HR, Hsu K, Papadopoulos EB, van den Brink MR, Boulad F, Kernan NA, Small TN, Wolden S, Collins NH, Chiu M, Heller G, O’Reilly RJ, Kewalramani T, Young JW, Jakubowski AA (2010) Second-line age-adjusted International Prognostic Index in patients with advanced non-Hodgkin lymphoma after T-cell depleted allogeneic hematopoietic SCT. Bone Marrow TransplantGoogle Scholar
  6. 6.
    Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS, Vitale M, Bottino C, Moretta L, Moretta A, Long EO (1995) Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439–449CrossRefPubMedGoogle Scholar
  7. 7.
    Colonna M, Samaridis J (1995) Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268:405–408CrossRefPubMedGoogle Scholar
  8. 8.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057CrossRefPubMedGoogle Scholar
  9. 9.
    Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH, Leung W (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin OncolGoogle Scholar
  10. 10.
    Lopes de Menezes DE, Denis-Mize K, Tang Y, Ye H, Kunich JC, Garrett EN, Peng J, Cousens LS, Gelb AB, Heise C, Wilson SE, Jallal B, Aukerman SL (2007) Recombinant interleukin-2 significantly augments activity of rituximab in human tumor xenograft models of B-cell non-Hodgkin lymphoma. J Immunother 30:64–74CrossRefPubMedGoogle Scholar
  11. 11.
    Hooijberg E, Sein JJ, van den Berk PC, Hart AA, van der Valk MA, Kast WM, Melief CJ, Hekman A (1995) Eradication of large human B cell tumors in nude mice with unconjugated CD20 monoclonal antibodies and interleukin 2. Cancer Res 55:2627–2634PubMedGoogle Scholar
  12. 12.
    Eisenbeis CF, Grainger A, Fischer B, Baiocchi RA, Carrodeguas L, Roychowdhury S, Chen L, Banks AL, Davis T, Young D, Kelbick N, Stephens J, Byrd JC, Grever MR, Caligiuri MA, Porcu P (2004) Combination immunotherapy of B-cell non-Hodgkin’s lymphoma with rituximab and interleukin-2: a preclinical and phase I study. Clin Cancer Res 10:6101–6110CrossRefPubMedGoogle Scholar
  13. 13.
    Miller JS, Tessmer-Tuck J, Pierson BA, Weisdorf D, McGlave P, Blazar BR, Katsanis E, Verfaillie C, Lebkowski J, Radford J Jr, Burns LJ (1997) Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant 3:34–44PubMedGoogle Scholar
  14. 14.
    Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897CrossRefPubMedGoogle Scholar
  15. 15.
    Khan KD, Emmanouilides C, Benson DM Jr, Hurst D, Garcia P, Michelson G, Milan S, Ferketich AK, Piro L, Leonard JP, Porcu P, Eisenbeis CF, Banks AL, Chen L, Byrd JC, Caligiuri MA (2006) A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin’s lymphoma. Clin Cancer Res 12:7046–7053CrossRefPubMedGoogle Scholar
  16. 16.
    Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, Burger SR, Panoskaltsis-Mortari A, Keever-Taylor CA, Zhang MJ, Miller JS (2003) IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 32:177–186CrossRefPubMedGoogle Scholar
  17. 17.
    McKenna DH, Kadidlo DM, Miller JS, Orchard PJ, Wagner JE, McCullough J (2005) The Minnesota Molecular and Cellular Therapeutics Facility: a state-of-the-art biotherapeutics engineering laboratory. Transfus Med Rev 19:217–228CrossRefPubMedGoogle Scholar
  18. 18.
    Miller JS, Oelkers S, Verfaillie C, McGlave P (1992) Role of monocytes in the expansion of human activated natural killer cells. Blood 80:2221–2229PubMedGoogle Scholar
  19. 19.
    Colvin GA, Berz D, Ramanathan M, Winer ES, Fast L, Elfenbein GJ, Quesenberry PJ (2009) Nonengraftment haploidentical cellular immunotherapy for refractory malignancies: tumor responses without chimerism. Biol Blood Marrow Transplant 15:421–431CrossRefPubMedGoogle Scholar
  20. 20.
    Barao I, Hanash AM, Hallett W, Welniak LA, Sun K, Redelman D, Blazar BR, Levy RB, Murphy WJ (2006) Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci USA 103:5460–5465CrossRefPubMedGoogle Scholar
  21. 21.
    Zimmer J, Andres E, Hentges F (2008) NK cells and Treg cells: a fascinating dance cheek to cheek. Eur J Immunol 38:2942–2945CrossRefPubMedGoogle Scholar
  22. 22.
    Hallett WH, Ames E, Alvarez M, Barao I, Taylor PA, Blazar BR, Murphy WJ (2008) Combination therapy using IL-2 and anti-CD25 results in augmented natural killer cell-mediated antitumor responses. Biol Blood Marrow Transplant 14:1088–1099CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH, Levine BL, Riddle M, June CH, Vallera DA, Weigel BJ, Blazar BR (2009) Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood 114:3793–3802CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Veronika Bachanova
    • 1
  • Linda J. Burns
    • 1
  • David H. McKenna
    • 1
  • Julie Curtsinger
    • 1
  • Angela Panoskaltsis-Mortari
    • 1
  • Bruce R. Lindgren
    • 1
  • Sarah Cooley
    • 1
  • Daniel Weisdorf
    • 1
  • Jeffrey S. Miller
    • 1
  1. 1.Blood and Marrow, Transplant ProgramUniversity of MinnesotaMinneapolisUSA

Personalised recommendations