Cancer Immunology, Immunotherapy

, Volume 59, Issue 9, pp 1401–1409 | Cite as

Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-α and IFN-γ dependent manners

  • Xinmei Zhu
  • Beth A. Fallert-Junecko
  • Mitsugu Fujita
  • Ryo Ueda
  • Gary Kohanbash
  • Edward R. Kastenhuber
  • Heather A. McDonald
  • Yan Liu
  • Pawel Kalinski
  • Todd A. Reinhart
  • Andres M. Salazar
  • Hideho Okada
Original Article


Stimulation of double-stranded (ds)RNA receptors can increase the effectiveness of cancer vaccines, but the underlying mechanisms are not completely elucidated. In this study, we sought to determine critical roles of host IFN-α and IFN-γ pathways in the enhanced therapeutic efficacy mediated by peptide vaccines and polyinosinic-polycytidylic acid [poly(I:C)] stabilized by lysine and carboxymethylcellulose (poly-ICLC) in the murine central nervous system (CNS) GL261 glioma. C57BL/6-background wild type (WT), IFN-α receptor-1 (IFN-αR1)−/− or IFN-γ −/− mice bearing syngeneic CNS GL261 glioma received subcutaneous (s.c.) vaccinations with synthetic peptides encoding CTL epitopes with or without intramuscular (i.m.) injections of poly-ICLC. The combinational treatment induced a robust transcription of CXCL10 in the glioma site. Blockade of CXCL10 with a specific monoclonal antibody (mAb) abrogated the efficient CNS homing of antigen-specific type-1 CTL (Tc1). Both IFN-αR −/− and IFN-γ −/− hosts failed to up-regulate the CXCL10 mRNA and recruit Tc1 cells to the tumor site, indicating non-redundant roles of type-1 and type-2 IFNs in the effects of poly-ICLC-assisted vaccines. The efficient trafficking of Tc1 also required Tc1-derived IFN-γ. Our data point to critical roles of the host-IFN-α and IFN-γ pathways in the modulation of CNS glioma microenvironment, and the therapeutic effectiveness of poly-ICLC-assisted glioma vaccines.


CNS glioma Poly-ICLC Glioma vaccine Type-1 immune response Chemokine 



Brain infiltrating lymphocyte


Central nervous system


Monoclonal antibody


Glioma-associated antigen


CTL with type-1 phenotype



We appreciate generous funding from Musella Foundation, Pittsburgh Foundation as well as the following funds from the National Institute of Health (NIH): 1R01NS055140 (Hideho Okada), 1P01CA100327 (Hideho Okada), 2P01NS40923 (Hideho Okada) and 1P01 CA132714 (Pawel Kalinski, Todd A. Reinhart and Hideho Okada).

Supplementary material

262_2010_876_MOESM1_ESM.doc (20 kb)
Supplementary method (DOC 20 kb)
262_2010_876_MOESM2_ESM.tif (1.8 mb)
Supplementary method (TIFF 1.75 mb)
262_2010_876_MOESM3_ESM.tif (2.7 mb)
Supplementary method (TIFF 2.68 kb)
262_2010_876_MOESM4_ESM.tif (1.3 mb)
Supplementary method (TIFF 1.31 mb)
262_2010_876_MOESM5_ESM.tif (2.4 mb)
Supplementary method (TIFF 2.40 mb)


  1. 1.
    Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P (2007) Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res 13:4565–4574CrossRefPubMedGoogle Scholar
  2. 2.
    Salem ML, Kadima AN, Cole DJ, Gillanders WE (2005) Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother 28:220–228CrossRefPubMedGoogle Scholar
  3. 3.
    McBride S, Hoebe K, Georgel P, Janssen E (2006) Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN. J Immunol 177:6122–6128PubMedGoogle Scholar
  4. 4.
    Ngoi SM, Tovey MG, Vella AT (2008) Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-alpha/beta. J Immunol 181:7670–7680PubMedGoogle Scholar
  5. 5.
    Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ (2006) The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine 24:5119–5132CrossRefPubMedGoogle Scholar
  6. 6.
    Yoneyama M, Kikuchi M, Matsumoto K et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858PubMedGoogle Scholar
  7. 7.
    Trumpfheller C, Caskey M, Nchinda G et al (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci U S A 105:2574–2579CrossRefPubMedGoogle Scholar
  8. 8.
    Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176:3804–3812PubMedGoogle Scholar
  9. 9.
    Gitlin L, Barchet W, Gilfillan S et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA 103:8459–8464CrossRefPubMedGoogle Scholar
  10. 10.
    Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu X, Nishimura F, Sasaki K et al (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10CrossRefPubMedGoogle Scholar
  12. 12.
    Sasaki K, Zhu X, Vasquez C et al (2007) Preferential expression of very late antigen-4 on type 1 CTL cells plays a critical role in trafficking into central nervous system tumors. Cancer Res 67:6451–6458CrossRefPubMedGoogle Scholar
  13. 13.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314CrossRefPubMedGoogle Scholar
  14. 14.
    Weber C, Alon R, Moser B, Springer TA (1996) Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J Cell Biol 134:1063–1073CrossRefPubMedGoogle Scholar
  15. 15.
    Lloyd AR, Oppenheim JJ, Kelvin DJ, Taub DD (1996) Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 156:932–938PubMedGoogle Scholar
  16. 16.
    Nishimura F, Dusak JE, Eguchi J et al (2006) Adoptive transfer of Type 1 CTL mediates effective anti-central nervous system tumor response: critical roles of IFN-inducible protein-10. Cancer Res 66:4478–4487CrossRefPubMedGoogle Scholar
  17. 17.
    Fujita M, Zhu X, Ueda R et al (2009) Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Cancer Res 69:1587–1595CrossRefPubMedGoogle Scholar
  18. 18.
    Fujita M, Zhu X, Sasaki K et al (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180:2089–2098PubMedGoogle Scholar
  19. 19.
    Park C, Lee S, Cho IH et al (2006) TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. GLIA 53:248–256CrossRefPubMedGoogle Scholar
  20. 20.
    Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159:12–19CrossRefPubMedGoogle Scholar
  21. 21.
    Jack CS, Arbour N, Manusow J et al (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330PubMedGoogle Scholar
  22. 22.
    Liu MT, Chen BP, Oertel P et al (2000) The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J Immunol 165:2327–2330PubMedGoogle Scholar
  23. 23.
    Farber JM (1997) Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61:246–257PubMedGoogle Scholar
  24. 24.
    Ogasawara K, Hida S, Weng Y et al (2002) Requirement of the IFN-alpha/beta-induced CXCR3 chemokine signalling for CD8+ T cell activation. Genes Cells 7:309–320CrossRefPubMedGoogle Scholar
  25. 25.
    Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187:875–883CrossRefPubMedGoogle Scholar
  26. 26.
    Nakajima C, Mukai T, Yamaguchi N et al (2002) Induction of the chemokine receptor CXCR3 on TCR-stimulated T cells: dependence on the release from persistent TCR-triggering and requirement for IFN-gamma stimulation. Eur J Immunol 32:1792–1801CrossRefPubMedGoogle Scholar
  27. 27.
    Lazzeri E, Romagnani P (2005) CXCR3-binding chemokines: novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord 5:109–118CrossRefPubMedGoogle Scholar
  28. 28.
    Fife BT, Kennedy KJ, Paniagua MC et al (2001) CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 166:7617–7624PubMedGoogle Scholar
  29. 29.
    Badovinac VP, Tvinnereim AR, Harty JT (2000) Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma 1. Science 290:1354–1358CrossRefPubMedGoogle Scholar
  30. 30.
    Mailliard RB, Wankowicz-Kalinska A, Cai Q et al (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937CrossRefPubMedGoogle Scholar
  31. 31.
    Mailliard RB, Son YI, Redlinger R et al (2003) Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 171:2366–2373PubMedGoogle Scholar
  32. 32.
    Marrack P, Kappler J, Mitchell T (1999) Type I interferons keep activated T cells alive. J Exp Med 189:521–530CrossRefPubMedGoogle Scholar
  33. 33.
    Tabiasco J, Devevre E, Rufer N et al (2006) Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor. J Immunol 177:8708–8713PubMedGoogle Scholar
  34. 34.
    Salem ML, Diaz-Montero CM, El-Naggar SA, Chen Y, Moussa O, Cole DJ (2009) The TLR3 agonist poly(I:C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naive recipient mice. Vaccine 27:549–557CrossRefPubMedGoogle Scholar
  35. 35.
    Overwijk WW, de Visser KE, Tirion FH et al (2006) Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. J Immunol 176:5213–5222PubMedGoogle Scholar
  36. 36.
    Salem ML, az-Montero CM, Al-Khami AA et al (2009) Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol 182:2030–2040CrossRefPubMedGoogle Scholar
  37. 37.
    Widner B, Fuchs D (2000) Immune activation and degradation of tryptophan. Mod Asp Immunobiol 1:105–108Google Scholar
  38. 38.
    Byrne GI, Lehmann LK, Kirschbaum JG, Borden EC, Lee CM, Brown RR (1986) Induction of tryptophan degradation in vitro and in vivo: a gamma-interferon-stimulated activity. J Interferon Res 6:389–396PubMedGoogle Scholar
  39. 39.
    Uyttenhove C, Pilotte L, Theate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat Med 9:1269–1274CrossRefPubMedGoogle Scholar
  40. 40.
    Van den EB (2003) A new mechanism of tumor resistance to the immune system, based on tryptophan breakdown by indoleamine 2, 3-dioxygenase. Bull Mem Acad R Med Belg 158:356–363Google Scholar
  41. 41.
    Grant R, Kapoor V (2003) Inhibition of indoleamine 2, 3-dioxygenase activity in IFN-gamma stimulated astroglioma cells decreases intracellular NAD levels. Biochem Pharmacol 66:1033–1036CrossRefPubMedGoogle Scholar
  42. 42.
    Nishioka Y, Wen H, Mitani K et al (2003) Differential effects of IL-12 on the generation of alloreactive CTL mediated by murine and human dendritic cells: a critical role for nitric oxide. J Leukoc Biol 73:621–629CrossRefPubMedGoogle Scholar
  43. 43.
    Yang T, Witham TF, Villa L et al (2002) Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res 62:2583–2591PubMedGoogle Scholar
  44. 44.
    Utaisincharoen P, Anuntagool N, Arjcharoen S, Limposuwan K, Chaisuriya P, Sirisinha S (2004) Induction of iNOS expression and antimicrobial activity by interferon (IFN)-beta is distinct from IFN-gamma in Burkholderia pseudomallei-infected mouse macrophages. Clin Exp Immunol 136:277–283CrossRefPubMedGoogle Scholar
  45. 45.
    Utaisincharoen P, Anuntagool N, Limposuwan K, Chaisuriya P, Sirisinha S (2003) Involvement of beta interferon in enhancing inducible nitric oxide synthase production and antimicrobial activity of Burkholderia pseudomallei-infected macrophages. Infect Immun 71:3053–3057CrossRefPubMedGoogle Scholar
  46. 46.
    Bronte V, Kasic T, Gri G et al (2005) Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201:1257–1268CrossRefPubMedGoogle Scholar
  47. 47.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964CrossRefPubMedGoogle Scholar
  48. 48.
    Salazar AM, Levy HB, Ondra S et al (1996) Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38:1096–1103CrossRefPubMedGoogle Scholar
  49. 49.
    Iizuka Y, Kojima H, Kobata T, Kawase T, Kawakami Y, Toda M (2006) Identification of a glioma antigen, GARC-1, using cytotoxic T lymphocytes induced by HSV cancer vaccine. Int J Cancer 118:942–949CrossRefPubMedGoogle Scholar
  50. 50.
    Hatano M, Kuwashima N, Tatsumi T et al (2004) Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. J Transl Med 2:40CrossRefPubMedGoogle Scholar
  51. 51.
    Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63:8487–8491PubMedGoogle Scholar
  52. 52.
    Overwijk WW, Tsung A, Irvine KR et al (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286CrossRefPubMedGoogle Scholar
  53. 53.
    Fallert BA, Reinhart TA (2002) Improved detection of simian immunodeficiency virus RNA by in situ hybridization in fixed tissue sections: combined effects of temperatures for tissue fixation and probe hybridization. J Virol Methods 99:23–32CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Xinmei Zhu
    • 1
    • 2
  • Beth A. Fallert-Junecko
    • 3
  • Mitsugu Fujita
    • 1
    • 2
  • Ryo Ueda
    • 1
    • 2
  • Gary Kohanbash
    • 2
    • 3
  • Edward R. Kastenhuber
    • 2
  • Heather A. McDonald
    • 2
  • Yan Liu
    • 1
  • Pawel Kalinski
    • 4
  • Todd A. Reinhart
    • 3
  • Andres M. Salazar
    • 5
  • Hideho Okada
    • 1
    • 2
    • 4
    • 6
  1. 1.Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Brain Tumor ProgramUniversity of Pittsburgh Cancer InstitutePittsburghUSA
  3. 3.Department of Infectious Diseases/Microbiology, Graduate School of Public HealthUniversity of PittsburghPittsburghUSA
  4. 4.Department of Surgery and ImmunologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  5. 5.Oncovir Inc.Washington DCUSA
  6. 6.G12a Research Pavilion at Hillman Cancer CenterPittsburghUSA

Personalised recommendations