Cancer Immunology, Immunotherapy

, Volume 59, Issue 10, pp 1593–1600 | Cite as

Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity

Focussed Research Review

Abstract

Myeloid-derived suppressor cells (MDSC) accumulate in most cancer patients and experimental animals with cancer. They accumulate in response to pro-inflammatory mediators and they use a variety of mechanisms to block both innate and adaptive antitumor immunity. Because of their critical role in obstructing immune responses, MDSC are a strategic obstacle to immunotherapies that require activation of the host’s cell-mediated and innate immune responses. Following a brief description of the factors that induce MDSC accumulation, this article reviews two newly discovered mechanisms that MDSC use to suppress the activation of CD4+ and CD8+ T cells. The first mechanism is MDSC sequestration of cysteine, an amino acid that T cells are unable to synthesize de novo and that they require for activation. The second mechanism is MDSC-mediated down-regulation of l-selectin. T cells must have an l-selectinhigh phenotype to home to lymph nodes and inflammatory sites where they encounter antigen and are activated. By down-regulating l-selectin on T cells, MDSC perturb T cell trafficking patterns and thereby inhibit T cell activation. Given the complexity of conditions that regulate MDSC accumulation and the variety of suppressive mechanisms used by MDSC, it is essential to understand which conditions and mechanisms are dominant so MDSC accumulation and/or activity can be targeted in individual patients to minimize MDSC-induced immune suppression.

Keywords

Tumor-induced immune suppression Amino acid metabolism T cell trafficking Suppressive myeloid cells 

Notes

Acknowledgments

These studies were supported by National Institutes of Health Grants RO1CA115880 and RO1CA84232. Animal studies described herein were approved by the UMBC Institutional Animal Care and Use Committee.

Conflict of interest statement

The author has no conflict of interest with the organization sponsoring this research.

References

  1. 1.
    Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20:241–246CrossRefPubMedGoogle Scholar
  2. 2.
    Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073CrossRefPubMedGoogle Scholar
  3. 3.
    Berzofsky JA, Terabe M (2008) NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 180:3627–3635PubMedGoogle Scholar
  4. 4.
    Groot Kormelink T, Abudukelimu A, Redegeld FA (2009) Mast cells as target in cancer therapy. Curr Pharm Des 15:1868–1878CrossRefPubMedGoogle Scholar
  5. 5.
    Strober S (1984) Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol 2:219–237CrossRefPubMedGoogle Scholar
  6. 6.
    Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95–103PubMedGoogle Scholar
  7. 7.
    Young MR, Wright MA (1992) Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: gamma interferon plus tumor necrosis factor alpha synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis. Cancer Res 52:6335–6340PubMedGoogle Scholar
  8. 8.
    Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67:425 author reply 426CrossRefPubMedGoogle Scholar
  9. 9.
    Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838–3846PubMedGoogle Scholar
  10. 10.
    Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398–5406PubMedGoogle Scholar
  11. 11.
    Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645PubMedGoogle Scholar
  12. 12.
    Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835CrossRefPubMedGoogle Scholar
  13. 13.
    Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 65:11743–11751CrossRefPubMedGoogle Scholar
  14. 14.
    Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA (2003) Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752CrossRefPubMedGoogle Scholar
  15. 15.
    Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983PubMedGoogle Scholar
  16. 16.
    Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721CrossRefPubMedGoogle Scholar
  17. 17.
    Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63:4441–4449PubMedGoogle Scholar
  18. 18.
    Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249CrossRefPubMedGoogle Scholar
  20. 20.
    Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, Zhang HG (2007) Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109:4336–4342CrossRefPubMedGoogle Scholar
  21. 21.
    Nausch N, Galani IE, Schlecker E, Cerwenka A (2008) Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood 112:4080–4089CrossRefPubMedGoogle Scholar
  22. 22.
    Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA (2005) A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633CrossRefPubMedGoogle Scholar
  23. 23.
    De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, Grone HJ, Platt FM, Zambon M, Cerundolo V (2008) Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118:4036–4048CrossRefPubMedGoogle Scholar
  24. 24.
    Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O’Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463–1474CrossRefPubMedGoogle Scholar
  25. 25.
    Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, Buer J, Liblau R, Manns MP, Korangy F, Greten TF (2008) Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135:871–881 (881 e1−5)CrossRefPubMedGoogle Scholar
  26. 26.
    Brys L, Beschin A, Raes G, Ghassabeh GH, Noel W, Brandt J, Brombacher F, De Baetselier P (2005) Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol 174:6095–6104PubMedGoogle Scholar
  27. 27.
    Angulo I, de las Heras FG, Garcia-Bustos JF, Gargallo D, Munoz-Fernandez MA, Fresno M (2000) Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95:212–220PubMedGoogle Scholar
  28. 28.
    Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB (2006) CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176:2085–2094PubMedGoogle Scholar
  29. 29.
    Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31:354–361CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, Khoury SJ (2007) CD11b+ Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 179:5228–5237PubMedGoogle Scholar
  31. 31.
    Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244CrossRefPubMedGoogle Scholar
  32. 32.
    Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802PubMedGoogle Scholar
  33. 33.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev ImmunolGoogle Scholar
  34. 34.
    Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65CrossRefPubMedGoogle Scholar
  35. 35.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444CrossRefPubMedGoogle Scholar
  36. 36.
    Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290PubMedGoogle Scholar
  37. 37.
    Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA, Voronov E, Apte RN (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175:8200–8208PubMedGoogle Scholar
  38. 38.
    Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85:996–1004CrossRefPubMedGoogle Scholar
  39. 39.
    Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939CrossRefPubMedGoogle Scholar
  40. 40.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513CrossRefPubMedGoogle Scholar
  41. 41.
    Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675PubMedGoogle Scholar
  42. 42.
    Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C, Coukos G, Lambris JD (2008) Modulation of the antitumor immune response by complement. Nat Immunol 9:1225–1235CrossRefPubMedGoogle Scholar
  43. 43.
    Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026CrossRefPubMedGoogle Scholar
  44. 44.
    Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952CrossRefPubMedGoogle Scholar
  45. 45.
    Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654CrossRefPubMedGoogle Scholar
  46. 46.
    Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191CrossRefPubMedGoogle Scholar
  47. 47.
    Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, Pikarsky E, Shapira L, Baniyash M (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177:4763–4772PubMedGoogle Scholar
  48. 48.
    Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by l-arginine. J Biol Chem 277:21123–21129CrossRefPubMedGoogle Scholar
  49. 49.
    Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573CrossRefPubMedGoogle Scholar
  50. 50.
    Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131CrossRefPubMedGoogle Scholar
  51. 51.
    Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449CrossRefPubMedGoogle Scholar
  52. 52.
    Gout PW, Buckley AR, Simms CR, Bruchovsky N (2001) Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 15:1633–1640CrossRefPubMedGoogle Scholar
  53. 53.
    Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123CrossRefPubMedGoogle Scholar
  54. 54.
    Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229CrossRefPubMedGoogle Scholar
  55. 55.
    Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109CrossRefPubMedGoogle Scholar
  56. 56.
    Bannai S (1984) Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta 779:289–306PubMedGoogle Scholar
  57. 57.
    Sato H, Watanabe H, Ishii T, Bannai S (1987) Neutral amino acid transport in mouse peritoneal macrophages. J Biol Chem 262:13015–13019PubMedGoogle Scholar
  58. 58.
    Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA 99:1491–1496CrossRefPubMedGoogle Scholar
  59. 59.
    Castellani P, Angelini G, Delfino L, Matucci A, Rubartelli A (2008) The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur J Immunol 38:2419–2425CrossRefPubMedGoogle Scholar
  60. 60.
    Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77CrossRefPubMedGoogle Scholar
  61. 61.
    Sakakura Y, Sato H, Shiiya A, Tamba M, Sagara J, Matsuda M, Okamura N, Makino N, Bannai S (2007) Expression and function of cystine/glutamate transporter in neutrophils. J Leukoc Biol 81:974–982CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang SM, Willett WC, Selhub J, Manson JE, Colditz GA, Hankinson SE (2003) A prospective study of plasma total cysteine and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 12:1188–1193PubMedGoogle Scholar
  63. 63.
    Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12:230–238CrossRefPubMedGoogle Scholar
  64. 64.
    Khan AI, Landis RC, Malhotra R (2003) l-Selectin ligands in lymphoid tissues and models of inflammation. Inflammation 27:265–280CrossRefPubMedGoogle Scholar
  65. 65.
    Rosen SD (2004) Ligands for l-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156CrossRefPubMedGoogle Scholar
  66. 66.
    Bradley LM, Watson SR, Swain SL (1994) Entry of naive CD4 T cells into peripheral lymph nodes requires l-selectin. J Exp Med 180:2401–2406CrossRefPubMedGoogle Scholar
  67. 67.
    Tedder TF, Steeber DA, Pizcueta P (1995) l-Selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 181:2259–2264CrossRefPubMedGoogle Scholar
  68. 68.
    Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate l-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944CrossRefPubMedGoogle Scholar
  69. 69.
    Li Y, Brazzell J, Herrera A, Walcheck B (2006) ADAM17 deficiency by mature neutrophils has differential effects on l-selectin shedding. Blood 108:2275–2279CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations