Cancer Immunology, Immunotherapy

, Volume 59, Issue 10, pp 1573–1582 | Cite as

Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy

  • Gerty Schreibelt
  • Jurjen Tel
  • Kwinten H. E. W. J. Sliepen
  • Daniel Benitez-Ribas
  • Carl G. Figdor
  • Gosse J. Adema
  • I. Jolanda M. de VriesEmail author
Focussed Research Review


Dendritic cells (DCs) are central players of the immune response. To date, DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients, predominantly with ex vivo-cultured monocyte-derived DCs (moDCs). However, the extensive culture period and compounds required to differentiate them into DCs may negatively affect their immunological potential. Therefore, it is attractive to consider alternative DC sources, such as blood DCs. Two major types of naturally occurring DCs circulate in peripheral blood, myeloid DCs (mDCs) and plasmacytoid (pDCs). These DC subsets express different surface molecules and are suggested to have distinct functions. Besides scavenging pathogens and presenting antigens, DCs secrete cytokines, all of which is vital for both the acquired and the innate immune system. These immunological functions relate to Toll-like receptors (TLRs) expressed by DCs. TLRs recognize pathogen-derived products and subsequently provoke DC maturation, antigen presentation and cytokine secretion. However, not every TLR is expressed on each DC subset nor causes the same effects when activated. Considering the large amount of clinical trials using DC-based immunotherapy for cancer patients and the decisive role of TLRs in DC maturation, this review summarizes TLR expression in different DC subsets in relation to their function. Emphasis will be given to the therapeutic potential of TLR-matured DC subsets for DC-based immunotherapy.


Dendritic cell vaccination Myeloid dendritic cells Plasmacytoid dendritic cells Toll-like receptors 



This work was supported by grants from the Dutch Cancer Society (KWF 2003-2917, KWF 2004-3126, KWF 2004-3127, KWF 2006-3699), the Netherlands Organization for Scientific Research (NWO ZonMW, Vidi grant 917.76.363, Vici grant 918.66.615), the TIL-foundation, the NOTK-foundation and the EU (Cancerimmunotherapy, LSHC-CT-2006-518234 and DC-Thera, LSHB-CT-2004-512074).


  1. 1.
    Lesterhuis WJ, de Vries IJM, Adema GJ, Punt CJA (2004) Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results. Ann Oncol 15:145–151Google Scholar
  2. 2.
    Lesterhuis WJ, Aarntzen EHJG, Vries IJM, Schuurhuis DH, Figdor CG, Adema GJ, Punt CJA (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66:118–134CrossRefPubMedGoogle Scholar
  3. 3.
    Breckpot K, Corthals J, Bonehill A, Michiels A, Tuyaerts S, Aerts C, Heirman C, Thielemans K (2005) Dendritic cells differentiated in the presence of IFN-beta and IL-3 are potent inducers of an antigen-specific CD8(+) T cell response. J Leukocyte Biol 78:898–908CrossRefPubMedGoogle Scholar
  4. 4.
    Soruri A, Kiafard Z, Dettmer C, Riggert J, Kohl J, Zwirner J (2003) IL-4 down-regulates anaphylatoxin receptors in monocytes and dendritic cells and impairs anaphylatoxin-induced migration in vivo. J Immunol 170:3306–3314PubMedGoogle Scholar
  5. 5.
    de Vries IJM, Lesterhuis WJ, Scharenborg NM, Engelen LPH, Ruiter DJ, Gerritsen MJP, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJA (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMedGoogle Scholar
  6. 6.
    Netea MG, Van der Meer JWM, Sutmuller RP, Adema GJ, Kullberg BJ (2005) From the Th1/Th2 paradigm towards a toll-like receptor/T-helper bias. Antimicrob Agents Chemother 49:3991–3996CrossRefPubMedGoogle Scholar
  7. 7.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefPubMedGoogle Scholar
  8. 8.
    Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161CrossRefPubMedGoogle Scholar
  9. 9.
    Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J (2000) BDCA-2, BDCA-3 and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165:6037–6046PubMedGoogle Scholar
  10. 10.
    Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226CrossRefPubMedGoogle Scholar
  11. 11.
    Corcoran L, Ferrero I, Vremec D, Lucas K, Waithman J, O’Keeffe M, Wu L, Wilson A, Shortman K (2003) The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J Immunol 170:4926–4932PubMedGoogle Scholar
  12. 12.
    D’Amico A, Wu L (2003) The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 198:293–303CrossRefPubMedGoogle Scholar
  13. 13.
    Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG (2003) Flt3 ligand regulates dendritic cell development from Flt3(+) lymphoid and myeloid-committed progenitors to Flt3(+) dendritic cells in vivo. J Exp Med 198:305–313CrossRefPubMedGoogle Scholar
  14. 14.
    Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H (2004) Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A 101:11416–11421CrossRefPubMedGoogle Scholar
  15. 15.
    Schakel K, Mayer E, Federle C, Schmitz M, Riethmuller G, Rieber EP (1998) A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes. Eur J Immunol 28:4084–4093CrossRefPubMedGoogle Scholar
  16. 16.
    MacDonald KPA, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DNJ (2002) Characterization of human blood dendritic cell subsets. Blood 100:4512–4520CrossRefPubMedGoogle Scholar
  17. 17.
    Piccioli D, Tavarini S, Borgogni E, Steri V, Nuti S, Sammicheli C, Bardelli M, Montagna D, Locatelli F, Wack A (2007) Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood 109:5371–5379CrossRefPubMedGoogle Scholar
  18. 18.
    Lindstedt M, Lundberg K, Borrebaeck CAK (2005) Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J Immunol 175:4839–4846PubMedGoogle Scholar
  19. 19.
    Huysamen C, Willment JA, Dennehy KM, Brown GD (2008) CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3(+) dendritic cells and a subset of monocytes. J Biol Chem 283:16693–16701CrossRefPubMedGoogle Scholar
  20. 20.
    Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble-antigen by cultured human dendritic cells is maintained by granulocyte-macrophage colony-stimulating factor plus interleukin-4 and down-regulated by tumor-necrosis-factor-alpha. J Exp Med 179:1109–1118CrossRefPubMedGoogle Scholar
  21. 21.
    Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJM (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480CrossRefPubMedGoogle Scholar
  22. 22.
    Wilson NS, El Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, Shortman K, Villadangos JA (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187–2194CrossRefPubMedGoogle Scholar
  23. 23.
    Jefford M, Schnurr M, Toy T, Masterman KA, Shin A, Beecroft T, Tai TY, Shortman K, Shackleton M, Davis ID, Parente P, Luft T, Chen WS, Cebon J, Maraskovsky E (2003) Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 102:1753–1763CrossRefPubMedGoogle Scholar
  24. 24.
    Osugi Y, Vuckovic S, Hart DNJ (2002) Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 100:2858–2866CrossRefPubMedGoogle Scholar
  25. 25.
    Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458PubMedGoogle Scholar
  26. 26.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801CrossRefPubMedGoogle Scholar
  27. 27.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995CrossRefPubMedGoogle Scholar
  28. 28.
    Yarovinsky F, Zhang DK, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang DK, Zhang GL, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526CrossRefPubMedGoogle Scholar
  30. 30.
    Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70––role of Toll-like receptor (TLR) 2 AND TLR4. J Biol Chem 277:15028–15034CrossRefPubMedGoogle Scholar
  31. 31.
    Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, da Costa C, Rammensee HG, Wagner H, Schild H (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853CrossRefPubMedGoogle Scholar
  32. 32.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511CrossRefPubMedGoogle Scholar
  33. 33.
    Hovanessian AG (2007) On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′–5′oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 18:351–361CrossRefPubMedGoogle Scholar
  34. 34.
    Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, Ozaki Y, Tomizawa H, Akira S, Fukuhara S (2002) Interferon-alpha and interleukin-12 are induced differentially by toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195:1507–1512CrossRefPubMedGoogle Scholar
  35. 35.
    Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31:3388–3393CrossRefPubMedGoogle Scholar
  36. 36.
    Kadowaki N, Ho S, Antonenko S, Malefyt RD, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869CrossRefPubMedGoogle Scholar
  37. 37.
    Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hartmann G (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31:3026–3037CrossRefPubMedGoogle Scholar
  38. 38.
    Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T (2003) Subcellular localization of toll-like receptor 3 in human dendritic cells. J Immunol 171:3154–3162PubMedGoogle Scholar
  39. 39.
    Means TK, Hayashi F, Smith KD, Aderem A, Luster AD (2003) The toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170:5165–5175PubMedGoogle Scholar
  40. 40.
    Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004PubMedGoogle Scholar
  41. 41.
    Renn CN, Sanchez DJ, Ochoa MT, Legaspi AJ, Oh CK, Liu PT, Krutzik SR, Sieling PA, Cheng GH, Modlin RL (2006) TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177:298–305PubMedGoogle Scholar
  42. 42.
    Hochrein H, O’Keeffe M (2008) Dendritic cell subsets and Toll-like receptors. In: Bauer S, Hartmann G (eds) Toll-like receptors (TLRs) and innate immunity. Handb Exp Pharmacol, vol 183. Springer, Berlin, pp 153–179CrossRefGoogle Scholar
  43. 43.
    Bell MP, Svingen PA, Rahman MK, Xiong Y, Faubion WA (2007) FOXP3 regulates TLR10 expression in human T regulatory cells. J Immunol 179:1893–1900PubMedGoogle Scholar
  44. 44.
    Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 166:249–255PubMedGoogle Scholar
  45. 45.
    Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKK epsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496CrossRefPubMedGoogle Scholar
  46. 46.
    Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606CrossRefPubMedGoogle Scholar
  47. 47.
    Chockalingam A, Brooks JC, Cameron JL, Blum LK, Leifer CA (2009) TLR9 traffics through the Golgi complex to localize to endolysosomes and respond to CpG DNA. Immunol Cell Biol 87:209–217CrossRefPubMedGoogle Scholar
  48. 48.
    Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198CrossRefPubMedGoogle Scholar
  49. 49.
    Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T, Lee KD, Man RLC, Barrat FJ (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203:1999–2008CrossRefPubMedGoogle Scholar
  50. 50.
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537PubMedGoogle Scholar
  51. 51.
    Flacher V, Bouschbacher M, Verronese E, Massacrier C, Sisirak V, Berthier-Vergnes O, Saint-Vis B, Caux C, Dezutter-Dambuyant C, Lebecque S, Valladeau J (2006) Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 177:7959–7967PubMedGoogle Scholar
  52. 52.
    Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, Trinchieri G, Bates EEM (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950PubMedGoogle Scholar
  53. 53.
    Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, Barton GM (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662CrossRefPubMedGoogle Scholar
  54. 54.
    Chuang TH, Ulevitch RJ (2004) Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5:495–502CrossRefPubMedGoogle Scholar
  55. 55.
    Boonstra A, Asselin-Paturel C, Gilliet M, Crain C, Trinchieri G, Liu YJ, O’Garra A (2003) Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197:101–109CrossRefPubMedGoogle Scholar
  56. 56.
    Salio M, Cella M, Vermi W, Facchetti F, Palmowski MJ, Smith CL, Shepherd D, Colonna M, Cerundolo V (2003) Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol 33:1052–1062CrossRefPubMedGoogle Scholar
  57. 57.
    Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C, Lebecque S (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10:7466–7474CrossRefPubMedGoogle Scholar
  58. 58.
    Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, Giese T, Gires O, Endres S, Hartmann G (2003) Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 63:6478–6487PubMedGoogle Scholar
  59. 59.
    Zou WP, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T, Wei S, Krzysiek R, Durand-Gasselin I, Gordon A, Pustilnik T, Curiel DT, Galanaud P, Capron F, Emilie D, Curiel TJ (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346CrossRefPubMedGoogle Scholar
  60. 60.
    Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–490PubMedGoogle Scholar
  61. 61.
    Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1425CrossRefPubMedGoogle Scholar
  62. 62.
    Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791PubMedGoogle Scholar
  63. 63.
    Wei S, Kryczek I, Zou LH, Daniel B, Cheng P, Mottram P, Curiel T, Lange A, Zou WP (2005) Plasmacytoid dendritic cells induce CD8(+) regulatory T cells in human ovarian carcinoma. Cancer Res 65:5020–5026CrossRefPubMedGoogle Scholar
  64. 64.
    Dummer R, Urosevic M, Kempf W, Hoek K, Hafner J, Burg G (2003) Imiquimod in basal cell carcinoma: how does it work? Br J Dermatol 149:57–58CrossRefPubMedGoogle Scholar
  65. 65.
    Miller RL, Gerster JF, Owens ML, Slade HB, Tomai MA (1999) Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol 21:1–14CrossRefPubMedGoogle Scholar
  66. 66.
    Hofmann MA, Kors C, Audring H, Walden P, Sterry W, Trefzer U (2008) Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother 31:520–527CrossRefPubMedGoogle Scholar
  67. 67.
    Lou YY, Liu CW, Kim GJ, Liu YJ, Hwu P, Wang G (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178:1534–1541PubMedGoogle Scholar
  68. 68.
    Piccioli D, Sammicheli C, Tavarini S, Nuti S, Frigimelica E, Manetti AGO, Nuccitelli A, Aprea S, Valentini S, Borgogni E, Wack A, Valiante NM (2009) Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation. Blood 113:4232–4239CrossRefPubMedGoogle Scholar
  69. 69.
    Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7:179–190CrossRefPubMedGoogle Scholar
  70. 70.
    Bonehill A, Tuyaerts S, Van Nuffel AM, Heirman C, Bos TJ, Fostier K, Neyns B, Thielemans K (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180CrossRefPubMedGoogle Scholar
  71. 71.
    Kokkinopoulos I, Jordan WJ, Ritter MA (2005) Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol Immunol 42:957–968CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gerty Schreibelt
    • 1
  • Jurjen Tel
    • 1
  • Kwinten H. E. W. J. Sliepen
    • 1
  • Daniel Benitez-Ribas
    • 2
  • Carl G. Figdor
    • 1
  • Gosse J. Adema
    • 1
  • I. Jolanda M. de Vries
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Tumor Immunology, Nijmegen Centre for Molecular Life SciencesRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of GastroenterologyCIBERehd, Hospital ClinicBarcelonaSpain
  3. 3.Department of Medical OncologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  4. 4.Department of Paedriatric Hemato-OncologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations