Advertisement

Cancer Immunology, Immunotherapy

, Volume 59, Issue 6, pp 909–919 | Cite as

Foxp3+ cell infiltration and granzyme B+/Foxp3+ cell ratio are associated with outcome in neoadjuvant chemotherapy-treated ovarian carcinoma

  • Martin Pölcher
  • Michael Braun
  • Nicolaus Friedrichs
  • Christian Rudlowski
  • Eva Bercht
  • Rolf Fimmers
  • Axel Sauerwald
  • Mignon-Denise Keyver-Paik
  • Kirsten Kübler
  • Reinhard Büttner
  • Walther C. Kuhn
  • Juan-José Hernando
Original Article

Abstract

Preoperative neoadjuvant chemotherapy (NAC) can significantly reduce tumour burden in patients with primarily unresectable chemosensitive tumours, allowing a more complete cytoreduction during debulking surgery and facilitating evaluation of tumour chemosensitivity, identification of appropriate treatment options and improvement of intervention protocols. In this study, we investigate, using immunohistochemistry, the impact of platinum/taxane-based NAC (NAC) on tumour-infiltrating lymphocytes (TILs) in advanced epithelial ovarian cancer (EOC) and their relationship with clinical outcome. All patients had clinical response, as shown by ascites volume and CA125 levels compared to pre-treatment findings. NAC intervention significantly increased CD4+, CD8+ and granzyme B+ infiltration while Foxp3+ accumulation remained unaffected. TILs were prognostically neutral for both progression-free survival (PFS) and overall survival (OS) before NAC. In contrast, after NAC, elevated granzyme B+ infiltration displayed a tendency for improved PFS (log-rank 0.064). Further, low Foxp3+ cell density was associated with longer PFS, as compared with strong Foxp3+ infiltration (median 20.94 vs. 11.24 months; log-rank 0.0001) and with improved OS (median 30.75 vs. 16.04 months, respectively; log-rank 0.056), demonstrating clear prognostic significance for PFS. In addition, high granzyme B+/Foxp3+ ratio post-NAC strongly correlated with improved PFS compared to low granzyme B+/Foxp3+ cell ratio (median 17.88 vs. 11.24 months, respectively), and showed to be a favourable prognostic factor for PFS (log-rank 0.014). Our findings indicate that NAC elicited an immunologic profile in which low immunosuppressive Foxp3+ infiltration and elevated numbers of activated granzyme B+ cells were significantly associated with EOC-specific PFS, suggesting a contribution of immunologic effects to improved clinical outcome.

Keywords

Neoadjuvant chemotherapy Ovarian cancer TILs CD8/CD4 ratio Foxp3 Granzyme B 

Notes

Acknowledgments

This is a single institution analysis of clinical data collected within a multicenter phase 2 trial, PRIMOVAR, ClinicalTrials.gov Identifier: NCT00551577, sponsored by Sanofi-Aventis Deutschland GmbH. We thank Christiane Esch for technical assistance with immunohistochemistry.

Conflict of interest statement

Walther Kuhn (principal investigator) received research funding from Sanofi-Aventis. All other authors indicated no potential conflict of interest.

References

  1. 1.
    Tummala MK, McGuire WP (2005) Recurrent ovarian cancer. Clin Adv Hematol Oncol 3:723–736PubMedGoogle Scholar
  2. 2.
    Heintz AP, Odicino F, Maisonneuve P, Quinn MA, Benedet JL, Creasman WT, Ngan HY, Pecorelli S, Beller U (2006) Carcinoma of the ovary. FIGO 6th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet 95(Suppl 1):S161–S192CrossRefPubMedGoogle Scholar
  3. 3.
    Chi DS, Liao JB, Leon LF, Venkatraman ES, Hensley ML, Bhaskaran D, Hoskins WJ (2001) Identification of prognostic factors in advanced epithelial ovarian carcinoma. Gynecol Oncol 82:532–537CrossRefPubMedGoogle Scholar
  4. 4.
    Kuhn W, Rutke S, Späthe K, Schmalfeldt B, Florack G, von Hundelshausen B, Pachyn D, Ulm K, Graeff H (2001) Neoadjuvant chemotherapy followed by tumor debulking prolongs survival for patients with poor prognosis in International Federation of Gynecology and Obstetrics Stage IIIC ovarian carcinoma. Cancer 92:2585–2591CrossRefPubMedGoogle Scholar
  5. 5.
    Lee SJ, Kim BG, Lee JW, Park CS, Lee JH, Bae DS (2006) Preliminary results of neoadjuvant chemotherapy with paclitaxel and cisplatin in patients with advanced epithelial ovarian cancer who are inadequate for optimum primary surgery. J Obstet Gynaecol Res 32:99–106CrossRefPubMedGoogle Scholar
  6. 6.
    Park TW, Kuhn WC (2004) Neoadjuvant chemotherapy in ovarian cancer. Expert Rev Anticancer Ther 4:639–647CrossRefPubMedGoogle Scholar
  7. 7.
    Pölcher M, Mahner S, Ortmann O, Hilfrich J, Diedrich K, Breitbach GP, Hoss C, Leutner C, Braun M, Mobus V, Karbe I, Stimmler P, Rudlowski C, Schwarz J, Kuhn W (2009) Neoadjuvant chemotherapy with carboplatin and docetaxel in advanced ovarian cancer—a prospective multicenter phase II trial (PRIMOVAR). Oncol Rep 22:605–613CrossRefPubMedGoogle Scholar
  8. 8.
    van der Most RG, Currie A, Robinson BW, Lake RA (2006) Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res 66:601–604CrossRefPubMedGoogle Scholar
  9. 9.
    Emens LA (2008) Chemotherapy and tumor immunity: an unexpected collaboration. Front Biosci 13:249–257CrossRefPubMedGoogle Scholar
  10. 10.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73CrossRefPubMedGoogle Scholar
  11. 11.
    Yu P, Fu YX (2006) Tumor-infiltrating T lymphocytes: friends or foes? Lab Invest 86:231–245CrossRefPubMedGoogle Scholar
  12. 12.
    Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26:373–400CrossRefPubMedGoogle Scholar
  13. 13.
    Sassen S, Schmalfeldt B, Avril N, Kuhn W, Busch R, Hofler H, Fend F, Nahrig J (2007) Histopathologic assessment of tumor regression after neoadjuvant chemotherapy in advanced-stage ovarian cancer. Hum Pathol 38:926–934CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213CrossRefPubMedGoogle Scholar
  15. 15.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543CrossRefPubMedGoogle Scholar
  16. 16.
    Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, Deibl M, Gastl G, Gunsilius E, Marth C (2005) The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11:8326–8331CrossRefPubMedGoogle Scholar
  17. 17.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949CrossRefPubMedGoogle Scholar
  18. 18.
    Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365CrossRefPubMedGoogle Scholar
  19. 19.
    Tomsova M, Melichar B, Sedlakova I, Steiner I (2008) Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol 108:415–420CrossRefPubMedGoogle Scholar
  20. 20.
    Han LY, Fletcher MS, Urbauer DL, Mueller P, Landen CN, Kamat AA, Lin YG, Merritt WM, Spannuth WA, Deavers MT, De Geest K, Gershenson DM, Lutgendorf SK, Ferrone S, Sood AK (2008) HLA class I antigen processing machinery component expression and intratumoral T-Cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin Cancer Res 14:3372–3379CrossRefPubMedGoogle Scholar
  21. 21.
    Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20:241–246CrossRefPubMedGoogle Scholar
  22. 22.
    Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Ann Rev Immunol 20:323–370CrossRefGoogle Scholar
  23. 23.
    Kondratiev S, Sabo E, Yakirevich E, Lavie O, Resnick MB (2004) Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial carcinoma. Clin Cancer Res 10:4450–4456CrossRefPubMedGoogle Scholar
  24. 24.
    Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67:354–361CrossRefPubMedGoogle Scholar
  25. 25.
    Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494PubMedGoogle Scholar
  26. 26.
    Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593CrossRefPubMedGoogle Scholar
  27. 27.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964CrossRefPubMedGoogle Scholar
  28. 28.
    Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B, Fumoleau P, Ghiringhelli F (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 14:2413–2420CrossRefPubMedGoogle Scholar
  29. 29.
    Ohtani H (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 7:4PubMedGoogle Scholar
  30. 30.
    Miyara M, Sakaguchi S (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13:108–116CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou G, Levitsky HI (2007) Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol 178:2155–2162PubMedGoogle Scholar
  32. 32.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061CrossRefPubMedGoogle Scholar
  33. 33.
    Fattorossi A, Battaglia A, Ferrandina G, Coronetta F, Legge F, Salutari V, Scambia G (2004) Neoadjuvant therapy changes the lymphocyte composition of tumor-draining lymph nodes in cervical carcinoma. Cancer 100:1418–1428CrossRefPubMedGoogle Scholar
  34. 34.
    Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E, Knolle PA, Thomas RK, von Bergwelt-Baildon M, Debey S, Hallek M, Schultze JL (2005) Reduced frequencies and suppressive function of CD4+ CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106:2018–2025CrossRefPubMedGoogle Scholar
  35. 35.
    Coleman S, Clayton A, Mason MD, Jasani B, Adams M, Tabi Z (2005) Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res 65:7000–7006CrossRefPubMedGoogle Scholar
  36. 36.
    Ikeda S, Funakoshi N, Inagaki M, Shibata T (2006) Clinicopathologic roles of tumor-infiltrating lymphocytes and CD8-positive lymphocytes in lung cancer imprint smears in squamous cell carcinoma and adenocarcinoma. Acta Cytol 50:423–429PubMedGoogle Scholar
  37. 37.
    Grabenbauer GG, Lahmer G, Distel L, Niedobitek G (2006) Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin Cancer Res 12:3355–3360CrossRefPubMedGoogle Scholar
  38. 38.
    Giatromanolaki A, Bates GJ, Koukourakis MI, Sivridis E, Gatter KC, Harris AL, Banham AH (2008) The presence of tumor-infiltrating FOXP3(+) lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol Oncol 110:216–221CrossRefPubMedGoogle Scholar
  39. 39.
    Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380CrossRefPubMedGoogle Scholar
  40. 40.
    Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer 8:57CrossRefPubMedGoogle Scholar
  41. 41.
    Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434CrossRefPubMedGoogle Scholar
  42. 42.
    Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911CrossRefPubMedGoogle Scholar
  43. 43.
    Sasaki A, Tanaka F, Mimori K, Inoue H, Kai S, Shibata K, Ohta M, Kitano S, Mori M (2008) Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur J Surg Oncol 34:173–179PubMedGoogle Scholar
  44. 44.
    Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J, Banham AH, Roncador G, Montalban C, Piris MA (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11:1467–1473CrossRefPubMedGoogle Scholar
  45. 45.
    Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, Montserrat E, Campo E, Banham AH (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964CrossRefPubMedGoogle Scholar
  46. 46.
    Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192CrossRefPubMedGoogle Scholar
  47. 47.
    Demaria S, Volm MD, Shapiro RL, Yee HT, Oratz R, Formenti SC, Muggia F, Symmans WF (2001) Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res 7:3025–3030PubMedGoogle Scholar
  48. 48.
    Wong BY, Gregory SA, Dang NH (2007) Denileukin diftitox as novel targeted therapy for lymphoid malignancies. Cancer Invest 25:495–501CrossRefPubMedGoogle Scholar
  49. 49.
    Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H, Cramer D, Lear SC, McMasters KM, Miller DM, Chesney J (2008) Transient T cell depletion causes regression of melanoma metastases. J Transl Med 6:12CrossRefPubMedGoogle Scholar
  50. 50.
    Hernando JJ, Park TW, Fischer HP, Zivanovic O, Braun M, Pölcher M, Grünn U, Leutner C, Pötzsch B, Kuhn W (2007) Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-alpha for relapsed metastatic ovarian cancer. Lancet Oncol 8:451–454CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin Pölcher
    • 1
  • Michael Braun
    • 1
  • Nicolaus Friedrichs
    • 2
    • 4
  • Christian Rudlowski
    • 1
  • Eva Bercht
    • 1
  • Rolf Fimmers
    • 3
  • Axel Sauerwald
    • 1
  • Mignon-Denise Keyver-Paik
    • 1
  • Kirsten Kübler
    • 1
  • Reinhard Büttner
    • 2
  • Walther C. Kuhn
    • 1
  • Juan-José Hernando
    • 1
  1. 1.Department of Gynaecology and Obstetrics, Centre for Integrated Oncology BonnBonn University Medical CentreBonnGermany
  2. 2.Institute of Pathology, Centre for Integrated Oncology BonnBonn University Medical CentreBonnGermany
  3. 3.Institute for Medical Biometry, Informatics, and EpidemiologyBonn University Medical CentreBonnGermany
  4. 4.Zentrale Klinische ForschungFreiburg UniversityFreiburgGermany

Personalised recommendations