Cancer Immunology, Immunotherapy

, Volume 59, Issue 6, pp 885–897 | Cite as

Maitake beta-glucan promotes recovery of leukocytes and myeloid cell function in peripheral blood from paclitaxel hematotoxicity

  • Hong Lin
  • Elisa de Stanchina
  • Xi Kathy Zhou
  • Feng Hong
  • Andrew Seidman
  • Monica Fornier
  • Wei-Lie Xiao
  • Edward J. Kennelly
  • Kathleen Wesa
  • Barrie R. Cassileth
  • Susanna Cunningham-RundlesEmail author
Original Article


Bone marrow myelotoxicity is a major limitation of chemotherapy. While granulocyte colony stimulating factor (G-CSF) treatment is effective, alternative approaches to support hematopoietic recovery are sought. We previously found that a beta-glucan extract from maitake mushroom Grifola frondosa (MBG) enhanced colony forming unit-granulocyte monocyte (CFU-GM) activity of mouse bone marrow and human hematopoietic progenitor cells (HPC), stimulated G-CSF production and spared HPC from doxorubicin toxicity in vitro. This investigation assessed the effects of MBG on leukocyte recovery and granulocyte/monocyte function in vivo after dose intensive paclitaxel (Ptx) in a normal mouse. After a cumulative dose of Ptx (90–120 mg/kg) given to B6D2F1mice, daily oral MBG (4 or 6 mg/kg), intravenous G-CSF (80 µg/kg) or Ptx alone were compared for effects on the dynamics of leukocyte recovery in blood, CFU-GM activity in bone marrow and spleen, and granulocyte/monocyte production of reactive oxygen species (ROS). Leukocyte counts declined less in Ptx + MBG mice compared to Ptx-alone (p = 0.024) or Ptx + G-CSF treatment (p = 0.031). Lymphocyte levels were higher after Ptx + MBG but not Ptx + G-CSF treatment compared to Ptx alone (p < 0.01). MBG increased CFU-GM activity in bone marrow and spleen (p < 0.001, p = 0.002) 2 days after Ptx. After two additional days (Ptx post-day 4), MBG restored granulocyte/monocyte ROS response to normal levels compared to Ptx-alone and increased ROS response compared to Ptx-alone or Ptx + G-CSF (p < 0.01, both). The studies indicate that oral MBG promoted maturation of HPC to become functionally active myeloid cells and enhanced peripheral blood leukocyte recovery after chemotoxic bone marrow injury.


Chemotherapy Hematotoxicity Paclitaxel Beta-glucan Bone marrow and leukocyte recovery Hematopoietic progenitor cells 



The study was supported by NIH NCI R25 105012 Collaborative Program in Nutrition and Cancer Prevention; NIH NCCAM and ODS: 1-P50-AT02779 Botanical Research Center for Botanical Immunomodulators, and the Children’s Cancer and Blood Foundation.

Supplementary material

262_2009_815_MOESM1_ESM.doc (71 kb)
Supplementary material (DOC 71KB)


  1. 1.
    Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd D, Holland JF, Smith BL, Sartor CI, Leung EH, Abrams J, Schilsky RL, Muss HB, Norton L (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21:1431–1439CrossRefPubMedGoogle Scholar
  2. 2.
    Fornier M, Norton L (2005) Dose-dense adjuvant chemotherapy for primary breast cancer. Breast Cancer Res 7:64–69CrossRefPubMedGoogle Scholar
  3. 3.
    De Boer RH, Eisen TG, Ellis PA, Johnston SR, Walsh G, Ashley S, Smith IE (2002) A randomised phase II study of conventional versus accelerated infusional chemotherapy with granulocyte colony-stimulating factor support in advanced breast cancer. Ann Oncol 13:889–894CrossRefPubMedGoogle Scholar
  4. 4.
    Osma MM, Ortuno F, Lozano ML, Gomez-Espuch J, Ayala F, Sanchez-Serrano I, Perez-Ceballos E, Moraleda JM, Vicente V (2001) Administration of post-autologous PBSCT rhG-CSF is associated with long-term low concentrations of bone marrow hematopoietic progenitor cells. Bone Marrow Transplant 27:1287–1292CrossRefPubMedGoogle Scholar
  5. 5.
    Pape H, Orth K, Heese A, Heyll A, Kobbe G, Schmitt G, Niederbichler AD, Peiper M, Schwarz A, Boelke E (2006) G-CSF during large field radiotherapy reduces bone marrow recovery capacity. Eur J Med Res 11:322–328PubMedGoogle Scholar
  6. 6.
    Arnedos M, Sutherland S, Ashley S, Smith I (2008) Routine prophylactic granulocyte colony stimulating factor (GCSF) is not necessary with accelerated (dose dense) paclitaxel for early breast cancer. Breast Cancer Res Treat 112:1–4CrossRefPubMedGoogle Scholar
  7. 7.
    Sugarman S, Wasserheit C, Hodgman E, Coglianese M, D’Alassandro A, Fournier M, Troso-Sandoval T, D’Andrea G, Drullinsky P, Lake D, George R, Mills N, Moynahan M, Smith J, Panageas K, Norton L, Hudis C (2009) A pilot study of dose-dense adjuvant paclitaxel without growth factor support for women with early breast carcinoma. Breast Cancer Res Treat 115:609–612CrossRefPubMedGoogle Scholar
  8. 8.
    Seidman AD, Berry D, Cirrincione C, Harris L, Muss H, Marcom PK, Gipson G, Burstein H, Lake D, Shapiro CL, Ungaro P, Norton L, Winer E, Hudis C (2008) Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26:1642–1649CrossRefPubMedGoogle Scholar
  9. 9.
    Untch M, Mobus V, Kuhn W, Muck BR, Thomssen C, Bauerfeind I, Harbeck N, Werner C, Lebeau A, Schneeweiss A, Kahlert S, von Koch F, Petry KU, Wallwiener D, Kreienberg R, Albert US, Luck HJ, Hinke A, Janicke F, Konecny GE (2009) Intensive dose-dense compared with conventionally scheduled preoperative chemotherapy for high-risk primary breast cancer. J Clin Oncol 27:2938–2945CrossRefPubMedGoogle Scholar
  10. 10.
    Horiguchi J, Rai Y, Tamura K, Taki T, Hisamatsu K, Ito Y, Seriu T, Tajima T (2009) Phase II study of weekly paclitaxel for advanced or metastatic breast cancer in Japan. Anticancer Res 29:625–630PubMedGoogle Scholar
  11. 11.
    Gianni L, Baselga J, Eiermann W, Porta VG, Semiglazov V, Lluch A, Zambetti M, Sabadell D, Raab G, Cussac AL, Bozhok A, Martinez-Agullo A, Greco M, Byakhov M, Lopez JJ, Mansutti M, Valagussa P, Bonadonna G (2009) Phase III trial evaluating the addition of paclitaxel to doxorubicin followed by cyclophosphamide, methotrexate, and fluorouracil, as adjuvant or primary systemic therapy: European Cooperative Trial in Operable Breast Cancer. J Clin Oncol 27:2474–2481CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou J, Zhang H, Gu P, Margolick JB, Yin D, Zhang Y (2009) Cancer stem/progenitor cell active compound 8-quinolinol in combination with paclitaxel achieves an improved cure of breast cancer in the mouse model. Breast Cancer Res Treat 115:269–277Google Scholar
  13. 13.
    Fountzilas G, Dafni U, Dimopoulos MA, Koutras A, Skarlos D, Papakostas P, Gogas H, Bafaloukos D, Kalogera-Fountzila A, Samantas E, Briasoulis E, Pectasides D, Maniadakis N, Matsiakou F, Aravantinos G, Papadimitriou C, Karina M, Christodoulou C, Kosmidis P, Kalofonos HP (2009) A randomized phase III study comparing three anthracycline-free taxane-based regimens, as first line chemotherapy, in metastatic breast cancer: a Hellenic Cooperative Oncology Group study. Breast Cancer Res Treat 115:87–99CrossRefPubMedGoogle Scholar
  14. 14.
    Deng G, Lin H, Seidman A, Fornier M, D’Andrea G, Wesa K, Yeung S, Cunningham-Rundles S, Vickers AJ, Cassileth B (2009) A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135:1215–1221Google Scholar
  15. 15.
    Tsoni SV, Brown GD (2008) Beta-glucans and dectin-1. Ann NY Acad Sci 1143:45–60CrossRefPubMedGoogle Scholar
  16. 16.
    Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196:407–412CrossRefPubMedGoogle Scholar
  17. 17.
    Cramer DE, Allendorf DJ, Baran JT, Hansen R, Marroquin J, Li B, Ratajczak J, Ratajczak MZ, Yan J (2006) Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 107:835–840CrossRefPubMedGoogle Scholar
  18. 18.
    Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J (1999) Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 42:61–74CrossRefPubMedGoogle Scholar
  19. 19.
    Cheung NK, Modak S, Vickers A, Knuckles B (2002) Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol Immunother 51:557–564PubMedGoogle Scholar
  20. 20.
    Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N (2006) Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamide-treated mice. Microbiol Immunol 50:687–700PubMedGoogle Scholar
  21. 21.
    Patchen ML, MacVittie TJ, Solberg BD, Souza LM (1990) Survival enhancement and hemopoietic regeneration following radiation exposure: therapeutic approach using glucan and granulocyte colony-stimulating factor. Exp Hematol 18:1042–1048PubMedGoogle Scholar
  22. 22.
    Hofer M, Pospisil M (1997) Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. A survey of the authors’ results. Int J Immunopharmacol 19:607–609CrossRefPubMedGoogle Scholar
  23. 23.
    Cramer DE, Wagner S, Li B, Liu J, Hansen R, Reca R, Wu W, Surma EZ, Laber DA, Ratajczak MZ, Yan J (2008) Mobilization of hematopoietic progenitor cells by yeast-derived beta-glucan requires activation of matrix metalloproteinase-9. Stem Cells 26:1231–1240CrossRefPubMedGoogle Scholar
  24. 24.
    Lin H, She YH, Cassileth BR, Sirotnak F, Cunningham Rundles S (2004) Maitake beta-glucan MD-fraction enhances bone marrow colony formation and reduces doxorubicin toxicity in vitro. Int Immunopharmacol 4:91–99CrossRefPubMedGoogle Scholar
  25. 25.
    Lin H, Cheung SW, Nesin M, Cassileth BR, Cunningham-Rundles S (2007) Enhancement of umbilical cord blood cell hematopoiesis by maitake beta-glucan is mediated by granulocyte colony-stimulating factor production. Clin Vaccine Immunol 14:21–27CrossRefPubMedGoogle Scholar
  26. 26.
    Lin H, De Stanchina E, Zhou XK, She YH, Hoang D, Cheung SW, Cassileth BR, Cunningham-Rundles S (2009) Maitake beta-glucan enhances umbilical cord blood stem cell transplantation in the NOD/SCID mouse. Exp Biol Med (Maywood) 234:342–353Google Scholar
  27. 27.
    York WS, Darvill AG, McNeil M, Siwenson TT, Albersheim P, Arthur W, Herbert W (1986) Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol 3–40Google Scholar
  28. 28.
    Merkle RK, Poppe I (1994) Carbohydrate composition analysis of glycoconjugates by gas–liquid chromatography/mass spectrometry. Methods Enzymol 230:1–15CrossRefPubMedGoogle Scholar
  29. 29.
    Ballabh P, Simm M, Kumari J, Califano C, Aghai Z, Laborada G, Sison C, Cunningham-Rundles S (2003) Respiratory burst activity in bronchopulmonary dysplasia and changes with dexamethasone. Pediatr Pulmonol 35:392–399CrossRefPubMedGoogle Scholar
  30. 30.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327CrossRefPubMedGoogle Scholar
  31. 31.
    Eisenhauer EA, Vermorken JB (1998) The taxoids. Comparative clinical pharmacology and therapeutic potential. Drugs 55:5–30CrossRefPubMedGoogle Scholar
  32. 32.
    Kim-Park WK, Moore MA, Hakki ZW, Kowolik MJ (1997) Activation of the neutrophil respiratory burst requires both intracellular and extracellular calcium. Ann NY Acad Sci 832:394–404CrossRefPubMedGoogle Scholar
  33. 33.
    Poruchynsky MS, Wang EE, Rudin CM, Blagosklonny MV, Fojo T (1998) Bcl-xL is phosphorylated in malignant cells following microtubule disruption. Cancer Res 58:3331–3338PubMedGoogle Scholar
  34. 34.
    Crossin KL, Carney DH (1981) Microtubule stabilization by taxol inhibits initiation of DNA synthesis by thrombin and by epidermal growth factor. Cell 27:341–350CrossRefPubMedGoogle Scholar
  35. 35.
    Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014CrossRefPubMedGoogle Scholar
  36. 36.
    Fetterly GJ, Tamburlin JM, Straubinger RM (2001) Paclitaxel pharmacodynamics: application of a mechanism-based neutropenia model. Biopharm Drug Dispos 22:251–261CrossRefPubMedGoogle Scholar
  37. 37.
    Bulitta JB, Zhao P, Arnold RD, Kessler DR, Daifuku R, Pratt J, Luciano G, Hanauske AR, Gelderblom H, Awada A, Jusko WJ (2009) Multiple-pool cell lifespan models for neutropenia to assess the population pharmacodynamics of unbound paclitaxel from two formulations in cancer patients. Cancer Chemother Pharmacol 63:1035–1048CrossRefPubMedGoogle Scholar
  38. 38.
    Polioudaki H, Kastrinaki MC, Papadaki HA, Theodoropoulos PA (2009) Microtubule-interacting drugs induce moderate and reversible damage to human bone marrow mesenchymal stem cells. Cell Prolif 42:434–447CrossRefPubMedGoogle Scholar
  39. 39.
    Panopoulos AD, Watowich SS (2008) Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine 42:277–288CrossRefPubMedGoogle Scholar
  40. 40.
    Moore MA, Warren DJ (1987) Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice. Proc Natl Acad Sci USA 84:7134–7138CrossRefPubMedGoogle Scholar
  41. 41.
    Molineux G, Pojda Z, Dexter TM (1990) A comparison of hematopoiesis in normal and splenectomized mice treated with granulocyte colony-stimulating factor. Blood 75:563–569PubMedGoogle Scholar
  42. 42.
    Lord BI, Molineux G, Pojda Z, Souza LM, Mermod JJ, Dexter TM (1991) Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood 77:2154–2159PubMedGoogle Scholar
  43. 43.
    Rowley SD, Zuehlsdorf M, Braine HG, Colvin OM, Davis J, Jones RJ, Saral R, Sensenbrenner LL, Yeager A, Santos GW (1987) CFU-GM content of bone marrow graft correlates with time to hematologic reconstitution following autologous bone marrow transplantation with 4-hydroperoxycyclophosphamide-purged bone marrow. Blood 70:271–275PubMedGoogle Scholar
  44. 44.
    Lejeune M, Sariban E, Cantinieaux B, Ferster A, Devalck C, Fondu P (1996) Defective polymorphonuclear leukocyte functions in children receiving chemotherapy for cancer are partially restored by recombinant human granulocyte colony-stimulating factor in vitro. J Infect Dis 174:800–805PubMedGoogle Scholar
  45. 45.
    Lejeune M, Ferster A, Cantinieaux B, Sariban E (1998) Prolonged but reversible neutrophil dysfunctions differentially sensitive to granulocyte colony-stimulating factor in children with acute lymphoblastic leukaemia. Br J Haematol 102:1284–1291CrossRefPubMedGoogle Scholar
  46. 46.
    Hubel K, Hegener K, Schnell R, Mansmann G, Oberhauser F, Staib P, Diehl V, Engert A (1999) Suppressed neutrophil function as a risk factor for severe infection after cytotoxic chemotherapy in patients with acute nonlymphocytic leukemia. Ann Hematol 78:73–77CrossRefPubMedGoogle Scholar
  47. 47.
    Wiles ME, Dykens JA, Wright CD (1994) Regulation of polymorphonuclear leukocyte membrane fluidity: effect of cytoskeletal modification. J Leukoc Biol 56:192–199PubMedGoogle Scholar
  48. 48.
    Wiles ME, Dykens JA, Wright CD (1995) Human neutrophil (PMN) oxygen radical production and the cytoskeleton. Life Sci 57:1533–1546CrossRefPubMedGoogle Scholar
  49. 49.
    Roberts RL, Nath J, Friedman MM, Gallin JI (1982) Effects of taxol on human neutrophils. J Immunol 129:2134–2141PubMedGoogle Scholar
  50. 50.
    Garcia I, Pascual A, Salvador J, Conejo MC, Perea EJ (1996) Effect of paclitaxel alone or in combination on the intracellular penetration and activity of quinolones in human neutrophils. J Antimicrob Chemother 38:859–863CrossRefPubMedGoogle Scholar
  51. 51.
    Boxio R, Bossenmeyer-Pourie C, Steinckwich N, Dournon C, Nusse O (2004) Mouse bone marrow contains large numbers of functionally competent neutrophils. J Leukoc Biol 75:604–611CrossRefPubMedGoogle Scholar
  52. 52.
    Ito K, Masuda Y, Yamasaki Y, Yokota Y, Nanba H (2009) Maitake beta-glucan enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF production and modulating CXCR4/SDF-1 expression. Int ImmunopharmacolGoogle Scholar
  53. 53.
    Hoglund M, Hakansson L, Venge P (1997) Effects of in vivo administration of G-CSF on neutrophil functions in healthy volunteers. Eur J Haematol 58:195–202PubMedCrossRefGoogle Scholar
  54. 54.
    Romero-Benitez MM, Aguirre MV, Juaristi JA, Alvarez MA, Trifaro JM, Brandan NC (2004) In vivo erythroid recovery following paclitaxel injury: correlation between GATA-1, c-MYB, NF-E2, Epo receptor expressions, and apoptosis. Toxicol Appl Pharmacol 194:230–238CrossRefPubMedGoogle Scholar
  55. 55.
    Juaristi JA, Aguirre MV, Carmuega RJ, Romero-Benitez M, Alvarez MA, Brandan NC (2001) Hematotoxicity induced by paclitaxel: in vitro and in vivo assays during normal murine hematopoietic recovery. Methods Find Exp Clin Pharmacol 23:161–167CrossRefPubMedGoogle Scholar
  56. 56.
    Ojeifo JO, Wu AG, Miao Y, Herscowtiz HB, Meehan KR (2000) Docetaxel-induced mobilization of hematopoietic stem cells in a murine model: kinetics, dose titration, and toxicity. Exp Hematol 28:451–459CrossRefPubMedGoogle Scholar
  57. 57.
    Churin AA, Gol’dberg VE, Karpova GV, Voronova OL, Feodorova EP, Kolotova OV, Skurikhin EG, Pershina OV (2008) Reaction of bone marrow hematopoiesis to the toxic effect of paclitaxel. Bull Exp Biol Med 145:213–217CrossRefPubMedGoogle Scholar
  58. 58.
    Pertusini E, Ratajczak J, Majka M, Vaughn D, Ratajczak MZ, Gewirtz AM (2001) Investigating the platelet-sparing mechanism of paclitaxel/carboplatin combination chemotherapy. Blood 97:638–644CrossRefPubMedGoogle Scholar
  59. 59.
    Panaro MA, Mitolo V (1999) Cellular responses to FMLP challenging: a mini-review. Immunopharmacol Immunotoxicol 21:397–419CrossRefPubMedGoogle Scholar
  60. 60.
    Harler MB, Wakshull E, Filardo EJ, Albina JE, Reichner JS (1999) Promotion of neutrophil chemotaxis through differential regulation of beta 1 and beta 2 integrins. J Immunol 162:6792–6799PubMedGoogle Scholar
  61. 61.
    Lapidot T (2001) Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. the role of SDF-1/CXCR4 interactions. Ann NY Acad Sci 938:83–95PubMedGoogle Scholar
  62. 62.
    Ratajczak MZ, Wysoczynski M, Reca R, Wan W, Zuba-Surma EK, Kucia M, Ratajczak J (2008) A pivotal role of activation of complement cascade (CC) in mobilization of hematopoietic stem/progenitor cells (HSPC). Adv Exp Med Biol 632:47–60PubMedGoogle Scholar
  63. 63.
    Winkler IG, Levesque JP (2006) Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 34:996–1009CrossRefPubMedGoogle Scholar
  64. 64.
    Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2007) A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 25:3093–3100CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hong Lin
    • 1
  • Elisa de Stanchina
    • 2
  • Xi Kathy Zhou
    • 3
  • Feng Hong
    • 4
  • Andrew Seidman
    • 5
  • Monica Fornier
    • 5
  • Wei-Lie Xiao
    • 6
  • Edward J. Kennelly
    • 6
  • Kathleen Wesa
    • 4
  • Barrie R. Cassileth
    • 4
  • Susanna Cunningham-Rundles
    • 1
    Email author
  1. 1.Cellular Immunology Laboratory, Division of Hematology/Oncology, Department of PediatricsWeill Medical College of Cornell UniversityNew YorkUSA
  2. 2.Antitumor Assessment Core FacilityMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Division of Biostatistics and Epidemiology, Department of Public HealthWeill Medical College of Cornell UniversityNew YorkUSA
  4. 4.Integrative Medicine ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.Breast Cancer Medicine Service, Department of MedicineMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  6. 6.Department of Biological SciencesLehman College, City University of New YorkNew YorkUSA

Personalised recommendations