Advertisement

Cancer Immunology, Immunotherapy

, Volume 59, Issue 5, pp 675–686 | Cite as

Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh

  • Akio Yamasaki
  • Chizu Kameda
  • Rui Xu
  • Haruo Tanaka
  • Takehiko Tasaka
  • Nobuhito Chikazawa
  • Hiroyuki Suzuki
  • Takashi Morisaki
  • Makoto Kubo
  • Hideya Onishi
  • Masao Tanaka
  • Mitsuo Katano
Original Article

Abstract

Recently, it was reported that Hh signaling is activated in tumor stromal cells but not in tumor cells themselves and that stromal cells may play a role in the proliferation of cancer cells. This suggests the possibility that stromal cells have an important role in the proliferation of tumor cells that may be mediated through Hh signaling. In this report, we present for the first time that inflammation-stimulated monocytes produce Shh through activation of the NF-κB signaling pathway, and that the Shh produced promotes the proliferation of pancreatic cancer cells in a paracrine manner through Hh signaling.

Keywords

NF-κB Hh pathway Monocytes Pancreatic cancer 

Abbreviations

PBMCs

Peripheral blood mononuclear cells

Shh

Sonic hedgehog

PDAC

Pancreatic ductal adenocarcinomas

Notes

Acknowledgments

This study was supported by General Scientific Research Grants (21390363) from the Ministry of Education, Culture, Sports and Technology of Japan. We thank Dr. K. Takeda for kindly providing us with the NF-κB-dependent luciferase reporter, Dr. Aubie Shaw for kindly providing us with pSHH-GFP plasmids, and Dr. H. Yamamoto from Department of Anatomic Pathology, Kyushu University, for giving us an appropriate technical advice about immunohistochemistry. We also thank Kaori Nomiyama for the skillful technical assistance.

References

  1. 1.
    Auwerx J (1991) The human leukemia cell line, THP-1: a multifaceted model for the study of monocyte–macrophage differentiation. Experientia 47(1):22–31CrossRefPubMedGoogle Scholar
  2. 2.
    Bansal P, Sonnenberg A (1995) Pancreatitis is a risk factor for pancreatic cancer. Gastroenterology 109:247–251CrossRefPubMedGoogle Scholar
  3. 3.
    Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846–851CrossRefPubMedGoogle Scholar
  4. 4.
    Boyle P, Maisonneuve P, Bueno de Mesquita B, Ghadirian P, Howe GR, Zatonski W, Baghurst P, Moerman CJ, Simard A, Miller AB, Przewoniak K, McMichael AJ, Hsieh CC, Walker AM (1996) Cigarette smoking and pancreas cancer: a case–control study of the search programme of the IARC. Int J Cancer 67:63–71CrossRefPubMedGoogle Scholar
  5. 5.
    Bumcrot DA, Takada R, McMahon AP (1995) Proteolytic processing yields two secreted forms of sonic hedgehog. Mol Cell Biol 15:2294–2303PubMedGoogle Scholar
  6. 6.
    Cassol E, Alfano M, Biswas P, Poli G (2006) Monocyte-derived macrophages and myeloid cell lines as targets of HIV-1 replication and persistence. J Leukoc Biol 80:1018–1030CrossRefPubMedGoogle Scholar
  7. 7.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159CrossRefPubMedGoogle Scholar
  8. 8.
    Crouse NR, Ajit D, Udan ML, Nichols MR (2009) Oligomeric amyloid-beta(1–42) induces THP-1 human monocyte adhesion and maturation. Brain Res 1254:109–119CrossRefPubMedGoogle Scholar
  9. 9.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37CrossRefPubMedGoogle Scholar
  10. 10.
    Dunaeva M, Michelson P, Kogerman P, Toftgard R (2003) Characterization of the physical interaction of Gli proteins with SUFU proteins. J Biol Chem 278:5116–5122CrossRefPubMedGoogle Scholar
  11. 11.
    Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R, Gipp J, Shaw A, Lamm ML, Munoz A, Lipinski R, Thrasher JB, Bushman W (2004) Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145:3961–3970CrossRefPubMedGoogle Scholar
  12. 12.
    Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, Gabrielson KL, Matsui W, Maitra A (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67:2187–2196CrossRefPubMedGoogle Scholar
  13. 13.
    Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087CrossRefPubMedGoogle Scholar
  14. 14.
    Izzi V, Chiurchiù V, D’Aquilio F, Palumbo C, Tresoldi I, Modesti A, Baldini MP (2009) Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages. Int J Oncol 34:543–550PubMedGoogle Scholar
  15. 15.
    Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759CrossRefPubMedGoogle Scholar
  16. 16.
    Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436CrossRefPubMedGoogle Scholar
  17. 17.
    Kasperczyk H, Baumann B, Debatin KM, Fulda S (2009) Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. FASEB J 23:21–33CrossRefPubMedGoogle Scholar
  18. 18.
    Kuga H, Morisaki T, Nakamura K, Onishi H, Noshiro H, Uchiyama A, Tanaka M, Katano M (2003) Interferon-gamma suppresses transforming growth factor-beta-induced invasion of gastric carcinoma cells through cross-talk of Smad pathway in a three-dimensional culture model. Oncogene 22:7838–7847CrossRefPubMedGoogle Scholar
  19. 19.
    Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11:1197–1204CrossRefPubMedGoogle Scholar
  20. 20.
    Li Q, Withoff S, Verma IM (2005) Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 26:318–325CrossRefPubMedGoogle Scholar
  21. 21.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, Dimagno EP, Andren-Sandberg A, Domellof L (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 328:1433–1437CrossRefPubMedGoogle Scholar
  22. 22.
    Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305CrossRefPubMedGoogle Scholar
  23. 23.
    Morton JP, Mongeau ME, Klimstra DS, Morris JP, Lee YC, Kawaguchi Y, Wright CV, Hebrok M, Lewis BC (2007) Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci USA 104:5103–5108CrossRefPubMedGoogle Scholar
  24. 24.
    Nagai S, Nakamura M, Yanai K, Wada J, Akiyoshi T, Nakashima H, Ohuchida K, Sato N, Tanaka M, Katano M (2008) Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase-9 activation. Cancer Sci 99:1377–1384CrossRefPubMedGoogle Scholar
  25. 25.
    Nakashima H, Nakamura M, Yamaguchi H, Yamanaka N, Akiyoshi T, Koga K, Yamaguchi K, Tsuneyoshi M, Tanaka M, Katano M (2006) Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res 66:7041–7049CrossRefPubMedGoogle Scholar
  26. 26.
    Otsuki M (2003) Chronic pancreatitis in Japan: epidemiology, prognosis, diagnostic criteria, and future problems. J Gastroenterol 38:315–326CrossRefPubMedGoogle Scholar
  27. 27.
    Pasca di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M (2006) Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 20:3161–3173CrossRefPubMedGoogle Scholar
  28. 28.
    Preiss S, Namgaladze D, Brüne B (2007) Critical role for classical PKC in activating Akt by phospholipase A2-modified LDL in monocytic cells. Cardiovasc Res 73:833–840CrossRefPubMedGoogle Scholar
  29. 29.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78CrossRefPubMedGoogle Scholar
  30. 30.
    Raderer M, Kurtaran A, Yang Q, Meghdadi S, Vorbeck F, Hejna M, Angelberger P, Kornek G, Pidlich J, Scheithauer W, Virgolini I (1998) Iodine-123-vasoactive intestinal peptide receptor scanning in patients with pancreatic cancer. J Nucl Med 39:1570–1575PubMedGoogle Scholar
  31. 31.
    Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999) Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126:3915–3924PubMedGoogle Scholar
  32. 32.
    Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304–4310PubMedGoogle Scholar
  33. 33.
    Schnoor M, Buers I, Sietmann A, Brodde MF, Hofnagel O, Robenek H, Lorkowski S (2009) Efficient non-viral transfection of THP-1 cells. J Immunol Methods 344:109–115CrossRefPubMedGoogle Scholar
  34. 34.
    Schreck R, Schreck R, Meier B, Männel DN, Dröge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med 175:1181–1194CrossRefPubMedGoogle Scholar
  35. 35.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V, Antoniu B, McMahon M, Warshaw AL, Hebrok M (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856CrossRefPubMedGoogle Scholar
  36. 36.
    Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, de Sauvage FJ (2009) Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 106:4254–4259CrossRefPubMedGoogle Scholar
  37. 37.
    Yamanaka N, Morisaki T, Nakashima H, Tasaki A, Kubo M, Kuga H, Nakahara C, Nakamura K, Noshiro H, Yao T, Tsuneyoshi M, Tanaka M, Katano M (2004) Interleukin 1beta enhances invasive ability of gastric carcinoma through nuclear factor-kappaB activation. Clin Cancer Res 10:1853–1859CrossRefPubMedGoogle Scholar
  38. 38.
    Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D, Nannini-Pepe M, Kotkow K, Marsters JC, Rubin LL, de Sauvage FJ (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang B, Ma Y, Guo H, Sun B, Niu R, Ying G, Zhang N (2009) Akt2 is required for macrophage chemotaxis. Eur J Immunol 39:894–901CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Akio Yamasaki
    • 1
  • Chizu Kameda
    • 1
  • Rui Xu
    • 1
  • Haruo Tanaka
    • 1
  • Takehiko Tasaka
    • 1
  • Nobuhito Chikazawa
    • 1
  • Hiroyuki Suzuki
    • 1
  • Takashi Morisaki
    • 1
  • Makoto Kubo
    • 2
  • Hideya Onishi
    • 1
  • Masao Tanaka
    • 2
  • Mitsuo Katano
    • 1
  1. 1.Department of Cancer Therapy and Research, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations