Advertisement

Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations

  • Amanda L. Boehm
  • Jack Higgins
  • Alex Franzusoff
  • Jeffrey SchlomEmail author
  • James W. Hodge
Original Article

Abstract

Purpose

Studies comparing two or more vaccine platforms have historically evaluated each platform based on its ability to induce an immune response and may conclude that one vaccine is more efficacious than the other(s), leading to a recommendation for development of the more effective vaccine for clinical studies. Alternatively, these studies have documented the advantages of a diversified prime and boost regimen due to amplification of the antigen-specific T-cell population. We hypothesize here that two vaccine platforms targeting the same antigen might induce shared and distinct antigen-specific T-cell populations, and examined the possibility that two distinct vaccines could be used concomitantly.

Experimental design

Using recombinant poxvirus and yeast vaccines, we compared the T-cell populations induced by these two platforms in terms of serum cytokine response, T-cell gene expression, T-cell receptor phenotype, antigen-specific cytokine expression, T-cell avidity, and T-cell antigen-specific tumor cell lysis.

Results

These studies demonstrate for the first time that vaccination with a recombinant poxvirus platform (rV/F-CEA/TRICOM) or a heat-killed yeast vaccine platform (yeast-CEA) elicits T-cell populations with both shared and unique phenotypic and functional characteristics. Furthermore, both the antigen and the vector play a role in the induction of distinct T-cell populations.

Conclusions

In this study, we demonstrate that concurrent administration of two vaccines targeting the same antigen induces a more diverse T-cell population that leads to enhanced antitumor efficacy. These studies provide the rationale for future clinical studies investigating concurrent administration of vaccine platforms targeting a single antigen to enhance the antigen-specific immune response.

Keywords

Vaccinia Saccharomyces cerevisiae Carcinoembryonic antigen (CEA) T-cell populations Antitumor immunity 

Notes

Acknowledgments

The authors acknowledge the excellent technical assistance of Marion Taylor and Anais Kasten-Sportes, and the editorial assistance of Bonnie L. Casey in the preparation of this manuscript.

References

  1. 1.
    Weide B, Garbe C, Rammensee HG, Pascolo S (2008) Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 115(1):33–42CrossRefPubMedGoogle Scholar
  2. 2.
    Riezebos-Brilman A, Walczak M, Regts J, Rots MG, Kamps G, Dontje B et al (2007) A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene Ther 14(24):1695–1704CrossRefPubMedGoogle Scholar
  3. 3.
    Naslund TI, Uyttenhove C, Nordstrom EK, Colau D, Warnier G, Jondal M et al (2007) Comparative prime-boost vaccinations using Semliki Forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor. J Immunol 178(11):6761–6769PubMedGoogle Scholar
  4. 4.
    Mylin LM, Schell TD, Roberts D, Epler M, Boesteanu A, Collins EJ et al (2000) Quantitation of CD8(+) T-lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol 74(15):6922–6934CrossRefPubMedGoogle Scholar
  5. 5.
    Millar J, Dissanayake D, Yang TC, Grinshtein N, Evelegh C, Wan Y et al (2007) The magnitude of the CD8+ T cell response produced by recombinant virus vectors is a function of both the antigen and the vector. Cell Immunol 250(1–2):55–67CrossRefPubMedGoogle Scholar
  6. 6.
    Hodge JW, Poole DJ, Aarts WM, Gomez Yafal A, Gritz L, Schlom J (2003) Modified vaccinia virus Ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res 63(22):7942–7949PubMedGoogle Scholar
  7. 7.
    Chan T, Sami A, El-Gayed A, Guo X, Xiang J (2006) HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene Ther 13(19):1391–1402CrossRefPubMedGoogle Scholar
  8. 8.
    Casimiro DR, Chen L, Fu TM, Evans RK, Caulfield MJ, Davies ME et al (2003) Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J Virol 77(11):6305–6313CrossRefPubMedGoogle Scholar
  9. 9.
    Bos R, van Duikeren S, van Hall T, Lauwen MM, Parrington M, Berinstein NL et al (2007) Characterization of antigen-specific immune responses induced by canarypox virus vaccines. J Immunol 179(9):6115–6122PubMedGoogle Scholar
  10. 10.
    Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J (1999) A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 59(22):5800–5807PubMedGoogle Scholar
  11. 11.
    Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J (2003) Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 9(5):1837–1849PubMedGoogle Scholar
  12. 12.
    Grosenbach DW, Barrientos JC, Schlom J, Hodge JW (2001) Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res 61(11):4497–4505PubMedGoogle Scholar
  13. 13.
    Greiner JW, Zeytin H, Anver MR, Schlom J (2002) Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Res 62(23):6944–6951PubMedGoogle Scholar
  14. 14.
    Arlen PM, Gulley JL, Madan RA, Hodge JW, Schlom J (2007) Preclinical and clinical studies of recombinant poxvirus vaccines for carcinoma therapy. Crit Rev Immunol 27(5):451–462PubMedGoogle Scholar
  15. 15.
    Bernstein MB, Chakraborty M, Wansley EK, Guo Z, Franzusoff A, Mostbock S et al (2008) Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine 26(4):509–521CrossRefPubMedGoogle Scholar
  16. 16.
    Wansley EK, Chakraborty M, Hance KW, Bernstein MB, Boehm AL, Guo Z et al (2008) Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clin Cancer Res 14(13):4316–4325CrossRefPubMedGoogle Scholar
  17. 17.
    Robbins PF, Kantor JA, Salgaller M, Hand PH, Fernsten PD, Schlom J (1991) Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res 51(14):3657–3662PubMedGoogle Scholar
  18. 18.
    Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW (2001) Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer Res 61(1):206–214PubMedGoogle Scholar
  19. 19.
    Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y et al (2007) Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and core proteins. Vaccine 25(8):1452–1463CrossRefPubMedGoogle Scholar
  20. 20.
    Pannetier C, Cochet M, Darche S, Casrouge A, Zoller M, Kourilsky P (1993) The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. Proc Natl Acad Sci USA 90(9):4319–4323CrossRefPubMedGoogle Scholar
  21. 21.
    Arden B, Klotz JL, Siu G, Hood LE (1985) Diversity and structure of genes of the alpha family of mouse T-cell antigen receptor. Nature 316(6031):783–787CrossRefPubMedGoogle Scholar
  22. 22.
    Hodge JW, Chakraborty M, Kudo-Saito C, Garnett CT, Schlom J (2005) Multiple costimulatory modalities enhance CTL avidity. J Immunol 174(10):5994–6004PubMedGoogle Scholar
  23. 23.
    Derby M, Alexander-Miller M, Tse R, Berzofsky J (2001) High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL. J Immunol 166(3):1690–1697PubMedGoogle Scholar
  24. 24.
    Wunderlich J, Shearer G (1994) Induction and measurement of cytotoxic T lymphocyte activity. In: Coligan J, Kruisbeek A, Margulies D, Shevach E, Strober W (eds) Current protocols in immunology. Wiley, Hoboken, NJGoogle Scholar
  25. 25.
    Wexler H (1966) Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst 36(4):641–645PubMedGoogle Scholar
  26. 26.
    Dudley ME, Ngo LT, Westwood J, Wunderlich JR, Rosenberg SA (2000) T-cell clones from melanoma patients immunized against an anchor-modified gp100 peptide display discordant effector phenotypes. Cancer J 6(2):69–77PubMedGoogle Scholar
  27. 27.
    Dutoit V, Rubio-Godoy V, Dietrich PY, Quiqueres AL, Schnuriger V, Rimoldi D et al (2001) Heterogeneous T-cell response to MAGE-A10(254–262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res 61(15):5850–5856PubMedGoogle Scholar
  28. 28.
    Echchakir H, Vergnon I, Dorothee G, Grunenwald D, Chouaib S, Mami-Chouaib F (2000) Evidence for in situ expansion of diverse antitumor-specific cytotoxic T lymphocyte clones in a human large cell carcinoma of the lung. Int Immunol 12(4):537–546CrossRefPubMedGoogle Scholar
  29. 29.
    Ferradini L, Roman-Roman S, Azocar J, Avril MF, Viel S, Triebel F et al (1992) Analysis of T-cell receptor alpha/beta variability in lymphocytes infiltrating a melanoma metastasis. Cancer Res 52(17):4649–4654PubMedGoogle Scholar
  30. 30.
    Messaoudi I, Guevara Patino JA, Dyall R, LeMaoult J, Nikolich-Zugich J (2002) Direct link between MHC polymorphism, T cell avidity, and diversity in immune defense. Science 298(5599):1797–1800CrossRefPubMedGoogle Scholar
  31. 31.
    Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4(2):123–132CrossRefPubMedGoogle Scholar
  32. 32.
    Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR et al (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205(7):1701–1714CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou X, Jun DY, Thomas AM, Huang X, Huang LQ, Mautner J et al (2005) Diverse CD8+ T-cell responses to renal cell carcinoma antigens in patients treated with an autologous granulocyte-macrophage colony-stimulating factor gene-transduced renal tumor cell vaccine. Cancer Res 65(3):1079–1088CrossRefPubMedGoogle Scholar
  34. 34.
    Hodge JW, McLaughlin JP, Kantor JA, Schlom J (1997) Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 15(6–7):759–768CrossRefPubMedGoogle Scholar
  35. 35.
    Marshall JL, Hoyer RJ, Toomey MA, Faraguna K, Chang P, Richmond E et al (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18(23):3964–3973PubMedGoogle Scholar
  36. 36.
    Wu L, Kong WP, Nabel GJ (2005) Enhanced breadth of CD4 T-cell immunity by DNA prime and adenovirus boost immunization to human immunodeficiency virus Env and Gag immunogens. J Virol 79(13):8024–8031CrossRefPubMedGoogle Scholar
  37. 37.
    Pancholi P, Liu Q, Tricoche N, Zhang P, Perkus ME, Prince AM (2000) DNA prime-canarypox boost with polycistronic hepatitis C virus (HCV) genes generates potent immune responses to HCV structural and nonstructural proteins. J Infect Dis 182(1):18–27CrossRefPubMedGoogle Scholar
  38. 38.
    Barnett SW, Klinger JM, Doe B, Walker CM, Hansen L, Duliege AM et al (1998) Prime–boost immunization strategies against HIV. AIDS Res Hum Retrovir 14(Suppl 3):S299–S309PubMedGoogle Scholar
  39. 39.
    Dunachie SJ, Hill AV (2003) Prime-boost strategies for malaria vaccine development. J Exp Biol 206(Pt 21):3771–3779CrossRefPubMedGoogle Scholar
  40. 40.
    McMichael AJ (2006) HIV vaccines. Annu Rev Immunol 24:227–255CrossRefPubMedGoogle Scholar
  41. 41.
    Moore AC, Hill AV (2004) Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunol Rev 199:126–143CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Amanda L. Boehm
    • 1
  • Jack Higgins
    • 1
  • Alex Franzusoff
    • 2
  • Jeffrey Schlom
    • 1
    Email author
  • James W. Hodge
    • 1
  1. 1.Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.GlobeImmune, Inc.LouisvilleUSA

Personalised recommendations