The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy

  • Xia Wu
  • Qin-Mei Feng
  • Ying Wang
  • Jun Shi
  • Hai-Liang Ge
  • Wen Di
Original Article

Abstract

Till now, little is known about the effects of chemotherapy on the immunity of cancer patients and the ideal timing (“window” period) for immunotherapy combined with chemotherapy. In this study, we addressed the immunogenicity of apoptotic ovarian cancer cells induced by paclitaxel and carboplatin, the immunologic aspects in ovarian cancer patients under chemotherapy, and the CTL response when CD8+ T cells were stimulated with tumor antigen in the “window” period. The immunogenicity of apoptotic ovarian cancer cells was detected first. Then, blood samples from each ovarian cancer patient were obtained before (S0) and at days 5–7 (S1), days 12–14 (S2) and days 25–28 (S3) after chemotherapy. The proportions of immunocyte subsets and the function of NK cells were studied. We found that apoptotic ovarian cancer cells elicited a powerful CTL response with antitumor activity in vitro. The proportions of CD3+ T cells, CD4+ T cells and the ratio of CD4+ to CD8+ cells did not change significantly on S1, S2 and S3, compared to S0, whereas the percentage of Treg cells decreased remarkably on S2. The proportions of Th1, Tc1, CD45RO memory T, NKT cells and the ratio of Tc1 to Tc2 cells increased significantly on S2. IFN-γ secreting CD8+ T cells also increased remarkably on S2, especially when CD8+ T cells were stimulated with autologous tumor antigen. From our point of view, chemotherapy induces temporary immune reconstitution and augments anti-tumor immune response. It is probable that the “window” period of days 12–14 after chemotherapy provides the best opportunity for immunotherapy.

Keywords

Apoptosis Immunogenicity Chemotherapy Immune reconstitution Ovarian cancer 

References

  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130CrossRefPubMedGoogle Scholar
  2. 2.
    Holschneider CH, Berek JS (2000) Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol 19:3–10CrossRefPubMedGoogle Scholar
  3. 3.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73CrossRefPubMedGoogle Scholar
  4. 4.
    Weiner HL, Cohen JA (2002) Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Mult Scler 8:142–154CrossRefPubMedGoogle Scholar
  5. 5.
    Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN, Trentham DE (1985) Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 312:818–822PubMedGoogle Scholar
  6. 6.
    Chan OT, Yang LX (2000) The immunological effects of taxanes. Cancer Immunol Immunother 49:181–185CrossRefPubMedGoogle Scholar
  7. 7.
    Skoberne M, Beignon AS, Larsson M, Bhardwaj N (2005) Apoptotic cells at the crossroads of tolerance and immunity. Curr Top Microbiol Immunol 289:259–292CrossRefPubMedGoogle Scholar
  8. 8.
    Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288CrossRefPubMedGoogle Scholar
  9. 9.
    Bellamy CO, Malcomson RD, Harrison DJ, Wyllie AH (1995) Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol 6:3–16CrossRefPubMedGoogle Scholar
  10. 10.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61CrossRefPubMedGoogle Scholar
  11. 11.
    Chaput N, De Botton S, Obeid M, Apetoh L, Ghiringhelli F, Panaretakis T, Flament C, Zitvogel L, Kroemer G (2007) Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med 85:1069–1076CrossRefPubMedGoogle Scholar
  12. 12.
    Menard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F (2008) Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother 57:1579–1587CrossRefPubMedGoogle Scholar
  13. 13.
    Flick MB, O’Malley D, Rutherford T, Rodov S, Kamsteeg M, Hao XY, Schwartz P, Kacinski BM, Mor G (2004) Apoptosis-based evaluation of chemosensitivity in ovarian cancer patients. J Soc Gynecol Investig 11:252–259CrossRefPubMedGoogle Scholar
  14. 14.
    Boisteau O, Gautier F, Cordel S, Henry F, Harb J, Douillard JY, Vallette FM, Meflah K, Gregoire M (1997) Apoptosis induced by sodium butyrate treatment increases immunogenicity of a rat colon tumor cell line. Apoptosis 2:403–412CrossRefPubMedGoogle Scholar
  15. 15.
    Henry F, Boisteau O, Bretaudeau L, Lieubeau B, Meflah K, Gregoire M (1999) Antigen-presenting cells that phagocytose apoptotic tumor-derived cells are potent tumor vaccines. Cancer Res 59:3329–3332PubMedGoogle Scholar
  16. 16.
    Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93CrossRefPubMedGoogle Scholar
  17. 17.
    Mulders P, Tso CL, Gitlitz B, Kaboo R, Hinkel A, Frand S, Kiertscher S, Roth MD, deKernion J, Figlin R, Belldegrun A (1999) Presentation of renal tumor antigens by human dendritic cells activates tumor-infiltrating lymphocytes against autologous tumor: implications for live kidney cancer vaccines. Clin Cancer Res 5:445–454PubMedGoogle Scholar
  18. 18.
    Steinman RM, Mellman I (2004) Immunotherapy: bewitched, bothered, and bewildered no more. Science 305:197–200CrossRefPubMedGoogle Scholar
  19. 19.
    Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727CrossRefPubMedGoogle Scholar
  20. 20.
    Lake RA, van der Most RG (2006) A better way for a cancer cell to die. N Engl J Med 354:2503–2504CrossRefPubMedGoogle Scholar
  21. 21.
    Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Metivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701CrossRefPubMedGoogle Scholar
  22. 22.
    Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2007) Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 67:7941–7944CrossRefPubMedGoogle Scholar
  23. 23.
    Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Robe J, Endres S, Eigler A (2002) Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res 62:2347–2352PubMedGoogle Scholar
  24. 24.
    Hoffmann TK, Meidenbauer N, Dworacki G, Kanaya H, Whiteside TL (2000) Generation of tumor-specific T lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res 60:3542–3549PubMedGoogle Scholar
  25. 25.
    Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, Pack M, Subklewe M, Sauter B, Sheff D, Albert M, Bhardwaj N, Mellman I, Steinman RM (1998) Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 188:2163–2173CrossRefPubMedGoogle Scholar
  26. 26.
    Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89CrossRefPubMedGoogle Scholar
  27. 27.
    Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N (1998) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188:1359–1368CrossRefPubMedGoogle Scholar
  28. 28.
    van der Most RG, Currie AJ, Robinson BW, Lake RA (2008) Decoding dangerous death: how cytotoxic chemotherapy invokes inflammation, immunity or nothing at all. Cell Death Differ 15:13–20CrossRefPubMedGoogle Scholar
  29. 29.
    Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599CrossRefPubMedGoogle Scholar
  30. 30.
    Ito N, Nakamura H, Tanaka Y, Ohgi S (1999) Lung carcinoma: analysis of T-helper type 1 and 2 cells and T-cytotoxic type 1 and 2 cells by intracellular cytokine detection with flow cytometry. Cancer 85:2359–2367CrossRefPubMedGoogle Scholar
  31. 31.
    Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM, Huang SC (2001) Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol 167:2972–2978PubMedGoogle Scholar
  32. 32.
    Kemp RA, Ronchese F (2001) Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. J Immunol 167:6497–6502PubMedGoogle Scholar
  33. 33.
    Wherry EJ, Barber DL, Kaech SM, Blattman JN, Ahmed R (2004) Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc Natl Acad Sci USA 101:16004–16009CrossRefPubMedGoogle Scholar
  34. 34.
    Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198CrossRefPubMedGoogle Scholar
  35. 35.
    Schabowsky RH, Madireddi S, Sharma R, Yolcu ES, Shirwan H (2007) Targeting CD4+CD25+FoxP3+ regulatory T cells for the augmentation of cancer immunotherapy. Curr Opin Investig Drugs 8:1002–1008PubMedGoogle Scholar
  36. 36.
    Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T-cell proliferation. J Exp Med 202:919–929CrossRefPubMedGoogle Scholar
  37. 37.
    Brode S, Cooke A (2008) Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit Rev Immunol 28:109–126PubMedGoogle Scholar
  38. 38.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end-stage cancer patients. Cancer Immunol Immunother 56:641–648CrossRefPubMedGoogle Scholar
  39. 39.
    Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344CrossRefPubMedGoogle Scholar
  40. 40.
    Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, Frelinger JA, Robinson BW (2003) Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913PubMedGoogle Scholar
  41. 41.
    Coleman S, Clayton A, Mason MD, Jasani B, Adams M, Tabi Z (2005) Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res 65:7000–7006CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Xia Wu
    • 1
  • Qin-Mei Feng
    • 1
  • Ying Wang
    • 2
  • Jun Shi
    • 1
  • Hai-Liang Ge
    • 2
  • Wen Di
    • 1
  1. 1.Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
  2. 2.Shanghai Institute of Immunology, School of MedicineShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations