Cancer Immunology, Immunotherapy

, Volume 58, Issue 9, pp 1517–1526 | Cite as

Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines

  • Javier G. Casado
  • Graham Pawelec
  • Sara Morgado
  • Beatriz Sanchez-Correa
  • Elena Delgado
  • Inmaculada Gayoso
  • Esther Duran
  • Rafael Solana
  • Raquel Tarazona
Focussed Research Review

Abstract

Knowledge of the interactions between MHC-unrestricted cytotoxic effector cells and solid tumour cells is essential for introducing more effective NK cell-based immunotherapy protocols into clinical practise. Here, to begin to obtain an overview of the possible universe of molecules that could be involved in the interactions between immune effector cells and melanoma, we analyse the surface expression of adhesion and costimulatory molecules and of ligands for NK-activating receptors on a large panel of cell lines from the “European Searchable Tumour Cell Line and Data Bank” (ESTDAB, http://www.ebi.ac.uk/ipd/estdab/) and discuss their potential role in the immune response against this tumour. We show that most melanoma cell lines express not only adhesion molecules that are likely to favour their interaction with cells of the immune system, but also their interaction with endothelial cells potentially increasing their invasiveness and metastatic capacity. A high percentage of melanoma cell lines also express ligands for the NK-activating receptor NKG2D; whereas, the majority express MICA/B molecules, ULBP expression, however, was rarely found. In addition to these molecules, we also found that CD155 (poliovirus receptor, PVR) is expressed by the majority of melanoma cell lines, whereas CD112 (Nectin-2) expression was rare. These molecules are DNAM-1 ligands, a costimulatory molecule involved in NK cell-mediated cytotoxicity and cytokine production that also mediates costimulatory signals for triggering naïve T cell differentiation. The phenotypical characterisation of adhesion molecules and ligands for receptors involved in cell cytotoxicity on a large series of melanoma cell lines will contribute to the identification of markers useful for the development of new immunotherapy strategies.

Keywords

Melanoma ESTDAB NK cells Cell-mediated cytotoxicity MICA/B Adhesion Activating receptor Cancer Tumour 

Notes

Acknowledgments

Work in the laboratories of R.T., R.S. and G.P. was partially supported by grants SAF2003/05184 and SAF2006/03687 (to R.T.) from the Spanish Ministry of Education and Science, FIS PI061320 (to R.S.) from the Spanish Ministry of Health, 03/2 and 3PR05A012, GRU07044 and GRU08077 (to R.T.) from Junta de Extremadura, cofinanced by the European Regional Development Fund (FEDER) and DFG-SFB685-B4 (to G.P.). The establishment of the database and cell bank was supported by the European Commission (contract QLRICT-2001-01325) (see http://www.ebi.ac.uk/ipd/estdab/). This work was also supported by contracts QLRT-2001-00668 (Outcome and Impact of Specific Treatment in European Research on Melanoma, OISTER), QLK6-CT2002-02283 (T cells in Ageing, T-CIA) from the 5th Framework Program of the European Union and 503306 from the 6th FP (European Network for the identification and validation of antigens and biomarkers in cancer and their application in clinical tumor immunology, ENACT). J.G.C. received a post-doctoral fellowship associated to the 5th Framework Programme, contract QLRT-2001-00668 (OISTER) and B.S.C and S.M. are pre-doctoral fellows from Junta de Extremadura. Special thanks are due to M.R. Gonzalez and J.J. Gordillo for their technical assistance in cell culture and flow cytometry.

References

  1. 1.
    Abbott JJ, Amirkhan RH, Hoang MP (2004) Malignant melanoma with a rhabdoid phenotype: histologic, immunohistochemical, and ultrastructural study of a case and review of the literature. Arch Pathol Lab Med 128:686–688PubMedGoogle Scholar
  2. 2.
    Altomonte M, Colizzi F, Esposito G, Maio M (1992) Circulating intercellular adhesion molecule 1 as a marker of disease progression in cutaneous melanoma. N Engl J Med 327:959PubMedGoogle Scholar
  3. 3.
    Altomonte M, Gloghini A, Bertola G, Gasparollo A, Carbone A, Ferrone S, Maio M (1993) Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res 53:3343–3348PubMedGoogle Scholar
  4. 4.
    Anichini A, Vegetti C, Mortarini R (2004) The paradox of T-cell-mediated antitumor immunity in spite of poor clinical outcome in human melanoma. Cancer Immunol Immunother 53:855–864PubMedCrossRefGoogle Scholar
  5. 5.
    Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F (2007) Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol 601:123–131PubMedGoogle Scholar
  6. 6.
    Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, Steinle A, Salih HR (2005) Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 65:6321–6329PubMedCrossRefGoogle Scholar
  7. 7.
    Armeanu S, Krusch M, Baltz KM, Weiss TS, Smirnow I, Steinle A, Lauer UM, Bitzer M, Salih HR (2008) Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res 14:3520–3528PubMedCrossRefGoogle Scholar
  8. 8.
    Backstrom E, Kristensson K, Ljunggren HG (2004) Activation of natural killer cells: underlying molecular mechanisms revealed. Scand J Immunol 60:14–22PubMedCrossRefGoogle Scholar
  9. 9.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedCrossRefGoogle Scholar
  10. 10.
    Becker JC, Dummer R, Hartmann AA, Burg G, Schmidt RE (1991) Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha. Functional consequences on cell-mediated cytotoxicity. J Immunol 147:4398–4401PubMedGoogle Scholar
  11. 11.
    Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567PubMedCrossRefGoogle Scholar
  12. 12.
    Bottino C, Moretta L, Moretta A (2006) NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol 298:175–182PubMedCrossRefGoogle Scholar
  13. 13.
    Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012PubMedCrossRefGoogle Scholar
  14. 14.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91PubMedCrossRefGoogle Scholar
  15. 15.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166PubMedCrossRefGoogle Scholar
  16. 16.
    Busche A, Goldmann T, Naumann U, Steinle A, Brandau S (2006) Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene A. Hum Gene Ther 17:135–146PubMedCrossRefGoogle Scholar
  17. 17.
    Byrd A, Hoffmann SC, Jarahian M, Momburg F, Watzl C (2007) Expression analysis of the ligands for the natural killer cell receptors NKp30 and NKp44. PLoS ONE 2:e1339PubMedCrossRefGoogle Scholar
  18. 18.
    Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D, Groh V, Spies T, Pollio G, Cosman D, Catalano L, Tassone P, Rotoli B, Venuta S (2005) HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 105:251–258PubMedCrossRefGoogle Scholar
  19. 19.
    Carlsten M, Bjorkstrom NK, Norell H, Bryceson Y, van Hall T, Baumann BC, Hanson M, Schedvins K, Kiessling R, Ljunggren HG, Malmberg KJ (2007) DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 67:1317–1325PubMedCrossRefGoogle Scholar
  20. 20.
    Casado JG, Delarosa O, Pawelec G, Peralbo E, Duran E, Barahona F, Solana R, Tarazona R (2009) Correlation of effector function with phenotype and cell division after in vitro differentiation of naive MART-1-specific CD8+ T cells. Int Immunol 21:53–62PubMedCrossRefGoogle Scholar
  21. 21.
    Casado JG, Delgado E, Patsavoudi E, Duran E, Sanchez-Correa B, Morgado S, Solana R, Tarazona R (2008) Functional implications of HNK-1 expression on invasive behaviour of melanoma cells. Tumour Biol 29:304–310PubMedCrossRefGoogle Scholar
  22. 22.
    Casado JG, Soto R, Delarosa O, Peralbo E, Carmen Munoz-Villanueva M, Rioja L, Pena J, Solana R, Tarazona R (2005) CD8 T cells expressing NK associated receptors are increased in melanoma patients and display an effector phenotype. Cancer Immunol Immunother 54:1162–1171PubMedCrossRefGoogle Scholar
  23. 23.
    Castriconi R, Cantoni C, Della CM, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125PubMedCrossRefGoogle Scholar
  24. 24.
    Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A (2004) Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64:9180–9184PubMedCrossRefGoogle Scholar
  25. 25.
    Collins KA, White WL (1995) Intercellular adhesion molecule 1 (ICAM-1) and bcl-2 are differentially expressed in early evolving malignant melanoma. Am J Dermatopathol 17:429–438PubMedCrossRefGoogle Scholar
  26. 26.
    Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133PubMedCrossRefGoogle Scholar
  27. 27.
    Ditlevsen DK, Povlsen GK, Berezin V, Bock E (2008) NCAM-induced intracellular signaling revisited. J Neurosci Res 86:727–743PubMedCrossRefGoogle Scholar
  28. 28.
    Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, Weller M, Friese MA (2006) TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129:2416–2425PubMedCrossRefGoogle Scholar
  29. 29.
    Farag SS, VanDeusen JB, Fehniger TA, Caligiuri MA (2003) Biology and clinical impact of human natural killer cells. Int J Hematol 78:7–17PubMedCrossRefGoogle Scholar
  30. 30.
    Fujiwara K, Higashi T, Nouso K, Nakatsukasa H, Kobayashi Y, Uemura M, Nakamura S, Sato S, Hanafusa T, Yumoto Y, Naito I, Shiratori Y (2004) Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. J Gastroenterol Hepatol 19:1121–1127PubMedCrossRefGoogle Scholar
  31. 31.
    Gao Z, Stanek A, Chen S (2007) A metastatic melanoma with an unusual immunophenotypic profile. Am J Dermatopathol 29:169–171PubMedCrossRefGoogle Scholar
  32. 32.
    Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ, Colonna M (2008) DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 205:2965–2973PubMedCrossRefGoogle Scholar
  33. 33.
    Gritzapis AD, Dimitroulopoulos D, Paraskevas E, Baxevanis CN, Papamichail M (2002) Large-scale expansion of CD3(+) CD56(+) lymphocytes capable of lysing autologous tumor cells with cytokine-rich supernatants. Cancer Immunol Immunother 51:440–448PubMedGoogle Scholar
  34. 34.
    Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738PubMedCrossRefGoogle Scholar
  35. 35.
    Haass NK, Smalley KS, Li L, Herlyn M (2005) Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 18:150–159PubMedCrossRefGoogle Scholar
  36. 36.
    Hinsby AM, Berezin V, Bock E (2004) Molecular mechanisms of NCAM function. Front Biosci 9:2227–2244PubMedCrossRefGoogle Scholar
  37. 37.
    Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR (2006) Soluble MICA in malignant diseases. Int J Cancer 118:684–687PubMedCrossRefGoogle Scholar
  38. 38.
    Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR (2006) Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 55:1584–1589PubMedCrossRefGoogle Scholar
  39. 39.
    Jarahian M, Watzl C, Issa Y, Altevogt P, Momburg F (2007) Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells. Int J Cancer 120:2625–2634PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson JP (1999) Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 18:345–357PubMedCrossRefGoogle Scholar
  41. 41.
    Krockenberger M, Dombrowski Y, Weidler C, Ossadnik M, Honig A, Hausler S, Voigt H, Becker JC, Leng L, Steinle A, Weller M, Bucala R, Dietl J, Wischhusen J (2008) Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol 180:7338–7348PubMedGoogle Scholar
  42. 42.
    Labarriere N, Diez E, Pandolfino MC, Viret C, Guilloux Y, Le Guiner S, Fonteneau JF, Dreno B, Jotereau F (1997) Optimal T cell activation by melanoma cells depends on a minimal level of antigen transcription. J Immunol 158:1238–1245PubMedGoogle Scholar
  43. 43.
    Le Guiner S, Le Drean E, Labarriere N, Fonteneau JF, Viret C, Diez E, Jotereau F (1998) LFA-3 co-stimulates cytokine secretion by cytotoxic T lymphocytes by providing a TCR-independent activation signal. Eur J Immunol 28:1322–1331PubMedCrossRefGoogle Scholar
  44. 44.
    Lemster BH, Michel JJ, Montag DT, Paat JJ, Studenski SA, Newman AB, Vallejo AN (2008) Induction of CD56 and TCR-independent activation of T cells with aging. J Immunol 180:1979–1990PubMedGoogle Scholar
  45. 45.
    Li J, Yang Y, Inoue H, Mori M, Akiyoshi T (1996) The expression of costimulatory molecules CD80 and CD86 in human carcinoma cell lines: its regulation by interferon gamma and interleukin-10. Cancer Immunol Immunother 43:213–219PubMedCrossRefGoogle Scholar
  46. 46.
    Liang S, Dong C (2008) Integrin VLA-4 enhances sialyl-Lewisx/a-negative melanoma adhesion to and extravasation through the endothelium under low flow conditions. Am J Physiol Cell Physiol 295:C701–C707PubMedCrossRefGoogle Scholar
  47. 47.
    Ma CS, Nichols KE, Tangye SG (2007) Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 25:337–379PubMedCrossRefGoogle Scholar
  48. 48.
    Maccalli C, Nonaka D, Piris A, Pende D, Rivoltini L, Castelli C, Parmiani G (2007) NKG2D-mediated antitumor activity by tumor-infiltrating lymphocytes and antigen-specific T-cell clones isolated from melanoma patients. Clin Cancer Res 13:7459–7468PubMedCrossRefGoogle Scholar
  49. 49.
    Maccalli C, Scaramuzza S, Parmiani G (2009) TNK cells (NKG2D(+) CD8 (+) or CD4 (+) T lymphocytes) in the control of human tumors. Cancer Immunol Immunother (in press)Google Scholar
  50. 50.
    Malmberg KJ, Bryceson YT, Carlsten M, Andersson S, Bjorklund A, Bjorkstrom NK, Baumann BC, Fauriat C, Alici E, Dilber MS, Ljunggren HG (2008) NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol Immunother 57:1541–1552PubMedCrossRefGoogle Scholar
  51. 51.
    Mendez R, Rodriguez T, Del CA, Monge E, Maleno I, Aptsiauri N, Jimenez P, Pedrinaci S, Pawelec G, Ruiz-Cabello F, Garrido F (2008) Characterization of HLA class I altered phenotypes in a panel of human melanoma cell lines. Cancer Immunol Immunother 57:719–729PubMedCrossRefGoogle Scholar
  52. 52.
    Mendez R, Ruiz-Cabello F, Rodriguez T, Del CA, Paschen A, Schadendorf D, Garrido F (2007) Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunol Immunother 56:88–94PubMedCrossRefGoogle Scholar
  53. 53.
    Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A (2006) Surface NK receptors and their ligands on tumor cells. Semin Immunol 18:151–158PubMedCrossRefGoogle Scholar
  54. 54.
    Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2005) Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 100:7–13PubMedCrossRefGoogle Scholar
  55. 55.
    Mortarini R, Piris A, Maurichi A, Molla A, Bersani I, Bono A, Bartoli C, Santinami M, Lombardo C, Ravagnani F, Cascinelli N, Parmiani G, Anichini A (2003) Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 63:2535–2545PubMedGoogle Scholar
  56. 56.
    Moschos SJ, Drogowski LM, Reppert SL, Kirkwood JM (2007) Integrins and cancer. Oncology (Williston Park) 21:13–20Google Scholar
  57. 57.
    Murray N, Salgia R, Fossella FV (2004) Targeted molecules in small cell lung cancer. Semin Oncol 31:106–111PubMedCrossRefGoogle Scholar
  58. 58.
    Natali PG, Hamby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F, Giannarelli D, Temponi M, Ferrone S (1997) Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 57:1554–1560PubMedGoogle Scholar
  59. 59.
    Ogasawara K, Lanier LL (2005) NKG2D in NK and T cell-mediated immunity. J Clin Immunol 25:534–540PubMedCrossRefGoogle Scholar
  60. 60.
    Olsen SH, Thomas DG, Lucas DR (2006) Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Mod Pathol 19:659–668PubMedCrossRefGoogle Scholar
  61. 61.
    Pende D, Accame L, Pareti L, Mazzocchi A, Moretta A, Parmiani G, Moretta L (1998) The susceptibility to natural killer cell-mediated lysis of HLA class I-positive melanomas reflects the expression of insufficient amounts of different HLA class I alleles. Eur J Immunol 28:2384–2394PubMedCrossRefGoogle Scholar
  62. 62.
    Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, Spaggiari GM, Dondero A, Carnemolla B, Reymond N, Mingari MC, Lopez M, Moretta L, Moretta A (2005) PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 42:463–469PubMedCrossRefGoogle Scholar
  63. 63.
    Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, Kubin M, Cosman D, Ferrone S, Moretta L, Moretta A (2002) Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62:6178–6186PubMedGoogle Scholar
  64. 64.
    Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105:2066–2073PubMedCrossRefGoogle Scholar
  65. 65.
    Poggi A, Massaro AM, Negrini S, Contini P, Zocchi MR (2005) Tumor-induced apoptosis of human IL-2-activated NK cells: role of natural cytotoxicity receptors. J Immunol 174:2653–2660PubMedGoogle Scholar
  66. 66.
    Porgador A, Mandelboim O, Restifo NP, Strominger JL (1997) Natural killer cell lines kill autologous beta2-microglobulin-deficient melanoma cells: implications for cancer immunotherapy. Proc Natl Acad Sci USA 94:13140–13145PubMedCrossRefGoogle Scholar
  67. 67.
    Quereux G, Pandolfino MC, Knol AC, Khammari A, Volteau C, Nguyen JM, Dreno B (2007) Tissue prognostic markers for adoptive immunotherapy in melanoma. Eur J Dermatol 17:295–301PubMedGoogle Scholar
  68. 68.
    Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T (2005) Activation of V gamma 9 V delta 2 T cells by NKG2D. J Immunol 175:2144–2151PubMedGoogle Scholar
  69. 69.
    Rodriguez T, Mendez R, Roberts CH, Ruiz-Cabello F, Dodi IA, Lopez Nevot MA, Paco L, Maleno I, Marsh SG, Pawelec G, Garrido F (2005) High frequency of homozygosity of the HLA region in melanoma cell lines reveals a pattern compatible with extensive loss of heterozygosity. Cancer Immunol Immunother 54:141–148PubMedCrossRefGoogle Scholar
  70. 70.
    Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396PubMedCrossRefGoogle Scholar
  71. 71.
    Salih HR, Goehlsdorf D, Steinle A (2006) Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum Immunol 67:188–195PubMedCrossRefGoogle Scholar
  72. 72.
    Salih HR, Holdenrieder S, Steinle A (2008) Soluble NKG2D ligands: prevalence, release, and functional impact. Front Biosci 13:3448–3456PubMedCrossRefGoogle Scholar
  73. 73.
    Salih HR, Rammensee HG, Steinle A (2002) Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098–4102PubMedGoogle Scholar
  74. 74.
    Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581PubMedCrossRefGoogle Scholar
  75. 75.
    Solana R, Casado JG, Delgado E, Delarosa O, Marin J, Duran E, Pawelec G, Tarazona R (2007) Lymphocyte activation in response to melanoma: interaction of NK-associated receptors and their ligands. Cancer Immunol Immunother 56:101–109PubMedCrossRefGoogle Scholar
  76. 76.
    Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N, Honda S, Shibuya A (2006) Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107:1491–1496PubMedCrossRefGoogle Scholar
  77. 77.
    Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 16:533–538PubMedCrossRefGoogle Scholar
  78. 78.
    Tang NE, Luyten GP, Mooy CM, Naus NC, de Jong PT, Luider TM (1996) HNK-1 antigens on uveal and cutaneous melanoma cell lines. Melanoma Res 6:411–418PubMedCrossRefGoogle Scholar
  79. 79.
    Tarazona R, Casado JG, Soto R, Delarosa O, Peralbo E, Rioja L, Pena J, Solana R (2004) Expression of NK-associated receptors on cytotoxic T cells from melanoma patients: a two-edged sword? Cancer Immunol Immunother 53:911–924PubMedCrossRefGoogle Scholar
  80. 80.
    Tarazona R, Delarosa O, Alonso C, Ostos B, Espejo J, Pena J, Solana R (2000) Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech Ageing Dev 121:77–88PubMedCrossRefGoogle Scholar
  81. 81.
    Thies A, Schachner M, Berger J, Moll I, Schulze HJ, Brunner G, Schumacher U (2004) The developmentally regulated neural crest-associated glycotope HNK-1 predicts metastasis in cutaneous malignant melanoma. J Pathol 203:933–939PubMedCrossRefGoogle Scholar
  82. 82.
    Uusitalo M, Kivela T (2001) The HNK-1 carbohydrate epitope in the eye: basic science and functional implications. Prog Retin Eye Res 20:1–28PubMedCrossRefGoogle Scholar
  83. 83.
    Vinceti M, Pellacani G, Casali B, Malagoli C, Nicoli D, Farnetti E, Bassissi S, Bergomi M, Seidenari S (2006) High risk of cutaneous melanoma amongst carriers of the intercellular adhesion molecule-1 R241 allele. Melanoma Res 16:93–96PubMedCrossRefGoogle Scholar
  84. 84.
    Volker HU, Engert S, Cramer A, Schmidt M, Kammerer U, Muller-Hermelink HK, Gattenlohner S (2008) Expression of CD56 isoforms in primary and relapsed adult granulosa cell tumors of the ovary. Diagn Pathol 3:29PubMedCrossRefGoogle Scholar
  85. 85.
    Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG, Steinle A (2008) Tumor-associated MICA is shed by ADAM proteases. Cancer Res 68:6368–6376PubMedCrossRefGoogle Scholar
  86. 86.
    Waldhauer I, Steinle A (2006) Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 66:2520–2526PubMedCrossRefGoogle Scholar
  87. 87.
    Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943PubMedCrossRefGoogle Scholar
  88. 88.
    Walmod PS, Kolkova K, Berezin V, Bock E (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem Res 29:2015–2035PubMedCrossRefGoogle Scholar
  89. 89.
    Welte S, Kuttruff S, Waldhauer I, Steinle A (2006) Mutual activation of natural killer cells and monocytes mediated by NKp80–AICL interaction. Nat Immunol 7:1334–1342PubMedCrossRefGoogle Scholar
  90. 90.
    Wick MR (2000) Immunohistology of neuroendocrine and neuroectodermal tumors. Semin Diagn Pathol 17:194–203PubMedGoogle Scholar
  91. 91.
    Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T, Rammensee HG, Steinle A (2005) Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175:720–729PubMedGoogle Scholar
  92. 92.
    Zocchi MR, Vidal M, Poggi A (1993) Involvement of CD56/N-CAM molecule in the adhesion of human solid tumor cell lines to endothelial cells. Exp Cell Res 204:130–135PubMedCrossRefGoogle Scholar
  93. 93.
    Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE (2007) Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev 18:159–170PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Javier G. Casado
    • 1
  • Graham Pawelec
    • 2
  • Sara Morgado
    • 1
  • Beatriz Sanchez-Correa
    • 1
  • Elena Delgado
    • 1
  • Inmaculada Gayoso
    • 4
  • Esther Duran
    • 3
  • Rafael Solana
    • 4
  • Raquel Tarazona
    • 1
  1. 1.Immunology Unit, Department of PhysiologyUniversity of ExtremaduraCáceresSpain
  2. 2.Center for Medical ResearchUniversity of TübingenTübingenGermany
  3. 3.Department of Comparative PathologyUniversity of ExtremaduraCáceresSpain
  4. 4.Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of MedicineUniversity of CórdobaCordobaSpain

Personalised recommendations