Patient-derived renal cell carcinoma cells fused with allogeneic dendritic cells elicit anti-tumor activity: in vitro results and clinical responses

  • Jun Zhou
  • Desheng Weng
  • Fangjian Zhou
  • Ke Pan
  • Haifeng Song
  • Qijing Wang
  • Huan Wang
  • Hui Wang
  • Yongqiang Li
  • Lixi Huang
  • Huakun Zhang
  • Wei Huang
  • Jianchuan Xia
Original Article

Abstract

Renal cell carcinoma (RCC) has been shown to be susceptible to immunotherapeutic treatment strategies. In the present study, patient-derived tumor cells were fused with allogeneic dendritic cells (DC) to elicit anti-tumor activity against RCC. DC from HLA-A2+ healthy donors were fused with primary RCC cells from ten patients. Phenotype of fusion cells were characterized by flow cytometer and confocal microscopy. In vitro, T cell proliferation, IFN-γ secretion and cytotocic T lymphocytes (CTL) activity elicited by allogeneic DC/RCC fusion cells were assessed. Clinically, ten patients were vaccinated with allogeneic DC/RCC fusion vaccine. The adverse effects and toxicity were observed. The clinical response was evaluated by CT scans. After fusion, the created hybrids expressed both tumor associated antigen and DC-derived molecules and could stimulate the proliferation and IFN-γ secretion of T cells as well as elicit strong CTL activity against RCC cells in vitro. In vivo, no serious adverse effects, toxicity, or signs of autoimmune disease were observed after vaccination therapy. Percentage of T lymphocyte subsets in peripheral blood of patients was increased significantly. One of ten patients exhibited a partial response with regression of lung metastases. Six patients showed stable disease with stabilization of previously progressive disease (follow up 1.5 years). The PR and SD responses, exhibited by 7/10 patients who received the allogeneic DC/RCC fusion vaccine treatment, suggest that this approach is safe and can elicit immunological responses in a significant portion of patients with RCC.

Keywords

Dendritic cell Renal cell carcinoma Cell fusion T cell activation Immunotherapy 

References

  1. 1.
    Rohrmann K, Staehler M, Haseke N, Bachmann A, Stief CG, Siebels M (2005) Immunotherapy in metastatic renal cell carcinoma. World J Urol 23:196–201PubMedCrossRefGoogle Scholar
  2. 2.
    Schrader AJ, Varga Z, Hegele A, Pfoertner S, Olbert P, Hofmann R (2006) Second-line strategies for metastatic renal cell carcinoma: classics and novel approaches. J Cancer Res Clin Oncol 132:137–149PubMedCrossRefGoogle Scholar
  3. 3.
    Bukowski RM (1997) Natural history and therapy of metastatic renal cell carcinoma: the role of interleukin-2. Cancer 80:1198–1220PubMedCrossRefGoogle Scholar
  4. 4.
    Bukowski RM (2000) Cytokine combinations: therapeutic use in patients with advanced renal cell carcinoma. Semin Oncol 27:204–212PubMedGoogle Scholar
  5. 5.
    Fisher RI, Rosenberg SA, Fyfe G (2000) Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am 6:S55–S57PubMedGoogle Scholar
  6. 6.
    Minasian LM, Motzer RJ, Gluck L, Mazumdar M, Vlamis V, Krown SE (1993) Interferon alfa-2a in advanced renal cell carcinoma: treatment results and survival in 159 patients with long-term follow-up. J Clin Oncol 11:1368–1375PubMedGoogle Scholar
  7. 7.
    Motzer RJ, Murphy BA, Bacik J, Schwartz LH, Nanus DM, Mariani T, Loehrer P, Wilding G, Fairclough DL, Cella D, Mazumdar M (2000) Phase III trial of interferon alfa-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J Clin Oncol 18:2972–2980PubMedGoogle Scholar
  8. 8.
    Negrier S, Escudier B, Lasset C, Douillard JY, Savary J, Chevreau C, Ravaud A, Mercatello A, Peny J, Mousseau M, Philip T, Tursz T (1998) Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Francais d’Immunotherapie. N Engl J Med 338:1272–1278PubMedCrossRefGoogle Scholar
  9. 9.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Ann Rev Immunol 9:271–296CrossRefGoogle Scholar
  10. 10.
    Romani N, Gruner S, Brang D, Kämpgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93PubMedCrossRefGoogle Scholar
  11. 11.
    Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony stimulating factor plus interleukin 4 and down regulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118PubMedCrossRefGoogle Scholar
  12. 12.
    Alexander M, Salgaller ML, Celis E, Sette A, Barnes WA, Rosenberg SA, Steller MA (1996) Generation of tumor-specific cytotoxic T lymphocytes from peripheral blood of cervical cancer patients by in vitro stimulation with a synthetic human papillomavirus type 16 BA46 epitope. Am J Obstet Gynecol 175:1586–1593PubMedCrossRefGoogle Scholar
  13. 13.
    Kim CJ, Prevette T, Cormier J, Overwijk W, Roden M, Restifo NP, Rosenberg SA, Marincola FM (1997) Dendritic cells infected with poxviruses encoding MART-1/Melan A sensitize T lymphocyte in vitro. J Immunother 20:276–286PubMedCrossRefGoogle Scholar
  14. 14.
    McArthur JG, Mulligan RC (1998) Induction of protective anti-tumor immunity by gene-modified dendritic cells. J Immunother 21:41–47PubMedCrossRefGoogle Scholar
  15. 15.
    Paglia P, Chiodoni C, Rodolfo M, Colombo MP (1996) Murine dendritic cells loaded in vitro with soluable protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 183:317–322PubMedCrossRefGoogle Scholar
  16. 16.
    Philip R, Brunette E, Ashton J, Alters S, Gadea J, Sorich M, Yau J, O’Donoghue G, Lebkowski J, Okarma T, Philip M (1998) Tansgene expression in dendritic cells to induce antigen-specific cytotoxic T cells in healthy donors. Cancer Gene Ther 5:236–246PubMedGoogle Scholar
  17. 17.
    Sonderbye L, Feng S, Yacoubian S, Buehler H, Ahsan N, Mulligan R, Langhoff E (1998) In vivo and in vitro modulation of immune stimulatory capacity of primary dendritic cells by adenovirus-mediated gene transduction. Exp Clin Immunogenet 15:100–111PubMedCrossRefGoogle Scholar
  18. 18.
    Young JW, Inaba K (1996) Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J Exp Med 183:7–11PubMedCrossRefGoogle Scholar
  19. 19.
    Zivotgel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation and T helper cell I-associated cytokines. J Exp Med 183:87–97CrossRefGoogle Scholar
  20. 20.
    Koido S, Nikrui N, Ohana M, Xia J, Tanaka Y, Liu C, Durfee JK, Lerner A, Gong J (2005) Assessment of fusion cells from patient-derived ovarian carcinoma cells and dendritic cells as a vaccine for clinical use. Gynecol Oncol 99:462–471PubMedCrossRefGoogle Scholar
  21. 21.
    Barbey F, Brakch N, Linhart A, Rosenblatt-Velin N, Jeanrenaud X, Qanadli S, Steinmann B, Burnier M, Palecek T, Bultas J, Hayoz D (2006) Cardiac and vascular hypertrophy in Fabry disease: evidence for a new mechanism independent of blood pressure and glycosphingolipid deposition. Arterioscler Thromb Vasc Biol 26:839–844PubMedCrossRefGoogle Scholar
  22. 22.
    Liu J, Matsuo H, Xu Q, Chen W, Wang J, Maruo T (2007) Concentration-dependent effects of a selective estrogen receptor modulator raloxifene on proliferation and apoptosis in human uterine leiomyoma cells cultured in vitro. Hum Reprod 22:1253–1259PubMedCrossRefGoogle Scholar
  23. 23.
    Thiery J, Dorothée G, Haddada H, Echchakir H, Richon C, Stancou R, Vergnon I, Benard J, Mami-Chouaib F, Chouaib S (2003) Potentiation of a tumor cell susceptibility to autologous CTL killing by restoration of wild-type p53 function. J Immunol 170:5919–5926PubMedGoogle Scholar
  24. 24.
    Zhang XY, Li WG, Wu YJ, Zheng TZ, Li W, Qu SY, Liu NF (2005) Proanthocyanidin from grape seeds potentiates anti-tumor activity of doxorubicin via immunomodulatory mechanism. Int Immunopharmacol 5:1247–1257PubMedCrossRefGoogle Scholar
  25. 25.
    Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263:18545–18552PubMedGoogle Scholar
  26. 26.
    Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245–273PubMedCrossRefGoogle Scholar
  27. 27.
    Zou W (2005) Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer 5:263–274PubMedCrossRefGoogle Scholar
  28. 28.
    Chen D, Xia J, Tanaka Y, Chen H, Koido S, Wernet O, Mukherjee P, Gendler SJ, Kufe D, Gong J (2003) Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells. Immunology 109:300–307PubMedCrossRefGoogle Scholar
  29. 29.
    Gong J, Chen D, Kashiwaba M, Kufe D (1997) Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 3:558–561PubMedCrossRefGoogle Scholar
  30. 30.
    Gong J, Chen D, Kashiwaba M, Li Y, Chen L, Takeuchi H, Qu H, Rowse GJ, Gendler SJ, Kufe D (1998) Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc Natl Acad Sci USA 95:6279–6283PubMedCrossRefGoogle Scholar
  31. 31.
    Koido S, Tanaka Y, Chen D, Kufe D, Gong J (2002) The kinetics of in vivo priming of CD4 and CD8 T cells by dendritic/tumor fusion cells in MUC1-transgenic mice. J Immunol 168:2111–2117PubMedGoogle Scholar
  32. 32.
    Xia J, Tanaka Y, Koido S, Liu C, Mukherjee P, Gendler SJ, Gong J (2003) Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol 170:1980–1986PubMedGoogle Scholar
  33. 33.
    Gong J, Nikrui N, Chen D, Koido S, Wu Z, Tanaka Y, Cannistra S, Avigan D, Kufe D (2000) Fusions of human ovarianc arcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol 165:1705–1711PubMedGoogle Scholar
  34. 34.
    Koido S, Hara E, Homma S, Torii A, Toyama Y, Kawahara H, Watanabe M, Yanaga K, Fujise K, Tajiri H, Gong J, Toda G (2005) Dendritic cells fused with allogeneic colorectal cancer cell line present multiple colorectal cancer-specific antigens and induce antitumor immunity against autologous tumor cells. Clin Cancer Res 11:7891–7900PubMedCrossRefGoogle Scholar
  35. 35.
    Koido S, Hara E, Torii A, Homma S, Toyama Y, Kawahara H, Ogawa M, Watanabe M, Yanaga K, Fujise K, Gong J, Toda G (2005) Induction of antigen specific CD4 and CD8 mediated T cell responses by fusions of autologous dendritic cells and metastatic colorectal cancer cells. Int J Cancer 117:587–595PubMedCrossRefGoogle Scholar
  36. 36.
    Koido S, Tanaka Y, Tajiri H, Gong J (2007) Generation and functional assessment of antigen-specific T cells stimulated by fusions of dendritic cells and allogeneic breast cancer cells. Vaccine 25:2610–2619PubMedCrossRefGoogle Scholar
  37. 37.
    Avigan DE, Vasir B, George DJ, Oh WK, Atkins MB, McDermott DF, Kantoff PW, Figlin RA, Vasconcelles MJ, Xu Y, Kufe D, Bukowski RM (2007) Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 30:749–761PubMedCrossRefGoogle Scholar
  38. 38.
    Märten A, Renoth S, Heinicke T, Albers P, Pauli A, Mey U, Caspari R, Flieger D, Hanfland P, Von Ruecker A, Eis-Hübinger AM, Müller S, Schwaner I, Lohmann U, Heylmann G, Sauerbruch T, Schmidt-Wolf IG (2003) Allogeneic dendritic cells fused with tumor cells: preclinical results and outcome of a clinical phase I/II trial in patients with metastatic renal cell carcinoma. Hum Gene Ther 14:483–494PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jun Zhou
    • 1
    • 2
  • Desheng Weng
    • 1
    • 2
  • Fangjian Zhou
    • 3
  • Ke Pan
    • 1
    • 2
  • Haifeng Song
    • 1
    • 2
  • Qijing Wang
    • 1
    • 2
  • Huan Wang
    • 2
  • Hui Wang
    • 1
    • 3
  • Yongqiang Li
    • 1
    • 2
  • Lixi Huang
    • 1
    • 2
  • Huakun Zhang
    • 1
    • 2
  • Wei Huang
    • 1
    • 2
  • Jianchuan Xia
    • 1
    • 2
  1. 1.State Key Laboratory of Oncology in Southern ChinaGuangzhouPeople’s Republic of China
  2. 2.Biotherapy Center, Cancer CenterSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of Urology, Cancer CenterSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations