Cancer Immunology, Immunotherapy

, Volume 58, Issue 12, pp 1919–1933

Polymorphisms of pro-inflammatory genes and prostate cancer risk: a pharmacogenomic approach

  • Calogero Caruso
  • Carmela Rita Balistreri
  • Giuseppina Candore
  • Giuseppe Carruba
  • Giuseppina Colonna-Romano
  • Danilo Di Bona
  • Giusi Irma Forte
  • Domenico Lio
  • Florinda Listì
  • Letizia Scola
  • Sonya Vasto
Symposium in Writing


In this paper, we consider the role of the genetics of inflammation in the pathophysiology of prostate cancer (PCa). This paper is not an extensive review of the literature, rather it is an expert opinion based on data from authors’ laboratories on age-related diseases and inflammation. The aim is the detection of a risk profile that potentially allows both the early identification of individuals at risk for disease and the possible discovery of potential targets for medication. In fact, a major goal of clinical research is to improve early detection of age-related diseases, cancer included, by developing tools to move diagnosis backward in disease temporal course, i.e., before the clinical manifestation of the malady, where treatment might play a decisive role in preventing or significantly retarding the manifestation of the disease. The better understanding of the function and the regulation of inflammatory pathway in PCa may help to know the mechanisms of its formation and progression, as well as to identify new targets for the refinement of new treatment such as the pharmacogenomics approach.


Aging Genetics Inflammation Longevity Pharmacogenomics Prostate cancer 


  1. 1.
    Gloeckler Ries LA, Reichman ME, Lewis DR, Hankey BF, Edwards BK (2003) Cancer survival and incidence from the surveillance, epidemiology, and end results (SEER) program. Oncologist 8:541–552PubMedCrossRefGoogle Scholar
  2. 2.
    Serrano M, Blasco MA (2007) Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 8:715–722PubMedCrossRefGoogle Scholar
  3. 3.
    Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774PubMedCrossRefGoogle Scholar
  4. 4.
    Vasto S, Carruba G, Lio D, Colonna-Romano G, Di Bona D, Candore G, Caruso C (2008) Inflammation, ageing, and cancer. Mech Ageing Dev. (Epub ahead of print)Google Scholar
  5. 5.
    Derhovanessian E, Solana R, Larbi A, Pawelec G (2008) Immunity, ageing and cancer. Immun Ageing 5:11PubMedCrossRefGoogle Scholar
  6. 6.
    Finn OJ (2006) Human tumor antigens, immunosurveillance, and cancer vaccines. Immunol Res 36:73–82PubMedCrossRefGoogle Scholar
  7. 7.
    Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50PubMedCrossRefGoogle Scholar
  8. 8.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  9. 9.
    Hussain T, Gupta S, Mukhta H (2003) Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett 191:125–135PubMedCrossRefGoogle Scholar
  10. 10.
    Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology (Williston Park) 16:217–226Google Scholar
  11. 11.
    Hsu PI, Lai KH, Hsu PN, Lo GH, Yu HC, Chen WC, Tsay FW, Lin HC, Tseng HH, Ger LP, Chen HC (2007) Helicobacter pylori infection and the risk of gastric malignancy. Am J Gastroenterol 102(4):102725–102730CrossRefGoogle Scholar
  12. 12.
    Zisman TL, Rubin DT (2008) Colorectal cancer and dysplasia in inflammatory bowel disease. World J Gastroenterol 714:266–269Google Scholar
  13. 13.
    Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94:252–266PubMedGoogle Scholar
  14. 14.
    Caruso C, Lio D, Cavallone L, Franceschi C (2004) Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci 1028:1–13PubMedCrossRefGoogle Scholar
  15. 15.
    Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A (2008) Pathways connecting inflammation and cancer. Curr Opin Genet Dev 1:3–10CrossRefGoogle Scholar
  16. 16.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedCrossRefGoogle Scholar
  17. 17.
    Borrello MG, Alberti L, Fischer A, Degl’innocenti D, Ferrario C, Gariboldi M, Marchesi F, Allavena P, Greco A, Collini P, Pilotti S, Cassinelli G, Bressan P, Fugazzola L, Mantovani A, Pierotti MA (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci USA 102:14825–14830PubMedCrossRefGoogle Scholar
  18. 18.
    De Marzo AM, Coffey DS, Nelson WG (1999) New concepts in tissue specificity for prostate cancer and benign prostatic hyperplasia. Urology 53:29–39PubMedCrossRefGoogle Scholar
  19. 19.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics. CA Cancer J Clin 57:43–66PubMedCrossRefGoogle Scholar
  20. 20.
  21. 21.
    Vasto S, Carruba G, Candore G, Italiano E, Di Bona D, Caruso C (2008) Inflammation and prostate cancer. Future Oncol 4:637–645PubMedCrossRefGoogle Scholar
  22. 22.
    Nelson WG, De Marzo AM, DeWeese TL, Isaacs WB (2004) The role of inflammation in the pathogenesis of prostate cancer. J Urol 172:S6–S11PubMedCrossRefGoogle Scholar
  23. 23.
    Hochreiter WW, Nadler RB, Koch AE, Campbell PL, Ludwig M, Weidner W, Schaeffer AJ (2000) Evaluation of the cytokines interleukin 8 and epithelial neutrophil activating peptide 78 as indicators of inflammation in prostatic secretions. Urology 56:1025–1029PubMedCrossRefGoogle Scholar
  24. 24.
    Fujita K, Ewing CM, Sokoll LJ, Elliott DJ, Cunningham M, De Marzo AM, Isaacs WB, Pavlovich CP (2008) Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate 68:872–882PubMedCrossRefGoogle Scholar
  25. 25.
    Franks LM (1954) Atrophy and hyperplasia in the prostate proper. J Pathol Bacteriol 68:617–621PubMedCrossRefGoogle Scholar
  26. 26.
    Bennett BD, Richardson PH, Gardner WA (1993) Histopathology and cytology of prostatitis. In: Lepor H, Lawson RK (eds) Prostate disease. Saunders, Philadelphia, pp 399–414Google Scholar
  27. 27.
    De Marzo AM, Meeker AK, Zha S, Luo J, Nakayama M, Platz EA, Isaacs WB, Nelson WG (2003) Human prostate cancer precursors and pathobiology. Urology 62:55–62PubMedGoogle Scholar
  28. 28.
    Putzi MJ, De Marzo AM (2000) Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 56:828–832PubMedCrossRefGoogle Scholar
  29. 29.
    Shah R, Mucci NR, Amin A, Macoska JA, Rubin MA (2001) Postatrophic hyperplasia of the prostate gland: neoplastic precursor or innocent bystander? Am J Pathol 158:1767–1773PubMedGoogle Scholar
  30. 30.
    De Marzo AM, Marchi VL, Epstein JI, Nelson WG (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155:1985–1992PubMedGoogle Scholar
  31. 31.
    Dennis LK, Lynch CF, Torner JC (2002) Epidemiologic association between prostatitis and prostate cancer. Urology 60:78–83PubMedCrossRefGoogle Scholar
  32. 32.
    Roberts RO, Bergstralh EJ, Bass SE, Lieber MM, Jacobsen SJ (2004) Prostatitis as a risk factor for prostate cancer. Epidemiology 15:93–99PubMedCrossRefGoogle Scholar
  33. 33.
    Montironi R, Mazzucchelli R, Scarpelli M (2002) Precancerous lesions and conditions of the prostate: from morphological and biological characterization to chemoprevention. Ann NY Acad Sci 963:169–184PubMedGoogle Scholar
  34. 34.
    Cohen RJ, Shannon BA, McNeal JE, Shannon T, Garrett KL (2005) Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol 173(6):1969–1974PubMedCrossRefGoogle Scholar
  35. 35.
    Hayes RB, Pottern LM, Strickler H, Rabkin C, Pope V, Swanson GM, Greenberg RS, Schoenberg JB, Liff J, Schwartz AG, Hoover RN, Fraumeni JF Jr (2000) Sexual behaviour, STDs and risks for prostate cancer. Br J Cancer 82:718–725PubMedCrossRefGoogle Scholar
  36. 36.
    Strickler HD, Goedert J (2001) Sexual behaviour and evidence for an infectious cause of prostate cancer. Epidemiol Rev 23:144–151PubMedGoogle Scholar
  37. 37.
    Dennis LK, Dawson DV (2002) Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 13:72–79PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor ML, Mainous AG, Wells BJ (2005) Prostate cancer and sexually transmitted diseases: a meta-analysis. Fam Med 37:506–512PubMedGoogle Scholar
  39. 39.
    Rosenblatt KA, Wicklund KG, Stanford JL (2001) Sexual factors and the risk of prostate cancer. Am J Epidemiol 153:1152–1158PubMedCrossRefGoogle Scholar
  40. 40.
    Carruba G (2007) Estrogen and prostate cancer: an eclipsed truth in an androgen-dominated scenario. J Cell Biochem 102:899–911PubMedCrossRefGoogle Scholar
  41. 41.
    Bosland MC, Ford H, Horton L (1995) Induction at high incidence of ductal prostate adenocarcinomas in NBL/Cr and Sprague–Dawley Hsd:SD rats treated with a combination of testosterone and estradiol-17β or diethylstilbestrol. Carcinogenesis 16:1311–1317PubMedCrossRefGoogle Scholar
  42. 42.
    Candore G, Lio D, Colonna Romano G, Caruso C (2002) Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. Autoimmun Rev 1:29–35PubMedCrossRefGoogle Scholar
  43. 43.
    Tam NN, Leav I, Ho SM (2007) Sex hormones induce direct epithelial and inflammation-mediated oxidative/nitrosative stress that favors prostatic carcinogenesis in the noble rat. Am J Pathol 171:1334–1341PubMedCrossRefGoogle Scholar
  44. 44.
    De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7:256–269PubMedCrossRefGoogle Scholar
  45. 45.
    Harris MT, Feldberg RS, Lau KM, Lazarus NH, Cochrane DE (2000) Expression of proinflammatory genes during estrogen-induced inflammation of the rat prostate. Prostate 44:19–25PubMedCrossRefGoogle Scholar
  46. 46.
    Risbridger GP, Bianco JJ, Ellem SJ, McPherson SJ (2003) Oestrogens and prostate cancer. Endocr Relat Cancer 10:187–191PubMedCrossRefGoogle Scholar
  47. 47.
    Prins GS, Huang L, Birch L, Pu Y (2006) The role of estrogens in normal and abnormal development of the prostate gland. Ann N Y Acad Sci 1089:1–13PubMedCrossRefGoogle Scholar
  48. 48.
    Ellem SJ, Schmitt JF, Pedersen JS, Frydenberg M, Risbridger GP (2004) Local aromatase expression in human prostate is altered in malignancy. J Clin Endocrinol Metab 89:2434–2441PubMedCrossRefGoogle Scholar
  49. 49.
    Bulun SE, Simpson ER (2008) Aromatase expression in women’s cancers. Adv Exp Med Biol 630:112–312PubMedCrossRefGoogle Scholar
  50. 50.
    Risbridger GP, Ellem SJ, McPherson SJ (2007) Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signaling. J Mol Endocrinol 39:183–188PubMedCrossRefGoogle Scholar
  51. 51.
    Bianco JJ, McPherson SJ, Wang H, Prins GS, Risbridger GP (2006) Transient neonatal exposure to estrogen-deficient mice (Aromatase knockout) reduces prostate weight and induces inflammation in late life. Am J Pathol 168:1869–1878PubMedCrossRefGoogle Scholar
  52. 52.
    Onsory K, Sobti RC, Al-Badran AI, Watanabe M, Shiraishi T, Krishan A, Mohan H, Kaur P (2008) Hormone receptor-related gene polymorphisms and prostate cancer risk in north Indian population. Mol Cell Biochem 314:25–35PubMedCrossRefGoogle Scholar
  53. 53.
    Cussenot O, Azzouzi AR, Nicolaiew N, Fromont G, Mangin P, Cormier L, Fournier G, Valeri A, Larre S, Thibault F, Giordanella JP, Pouchard M, Zheng Y, Hamdy FC, Cox A, Cancel-Tassin G (2007) Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. J Clin Oncol 25:3596–3602PubMedCrossRefGoogle Scholar
  54. 54.
    Huang YC, Chen M, Lin MW, Chung MY, Chang YH, Huang WJ, Wu TT, Hsu JM, Yang S, Chen YM (2007) CYP19 TCT tri-nucleotide Del/Del genotype is a susceptibility marker for prostate cancer in a Taiwanese population. Urology 69:996–1000PubMedCrossRefGoogle Scholar
  55. 55.
    Tsuchiya N, Wang L, Suzuki H, Segawa T, Fukuda H, Narita S, Shimbo M, Kamoto T, Mitsumori K, Ichikawa T, Ogawa O, Nakamura A, Habuchi T (2006) Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol 124:1982–1989CrossRefGoogle Scholar
  56. 56.
    Modugno F, Weissfeld JL, Trump DL, Zmuda JM, Shea P, Cauley JA, Ferrell RE (2001) Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 7:3092–3096PubMedGoogle Scholar
  57. 57.
    Latil AG, Azzouzi R, Cancel GS, Guillaume EC, Cochan-Priollet B, Berthon PL, Cussenot O (2001) Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer 192:1130–1137CrossRefGoogle Scholar
  58. 58.
    Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Pike MC (2003) Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum Hered 55:27–36PubMedCrossRefGoogle Scholar
  59. 59.
    Suzuki K, Nakazato H, Matsui H, Koike H, Okugi H, Kashiwagi B, Nishii M, Ohtake N, Nakata S, Ito K, Yamanaka H (2003) Genetic polymorphisms of estrogen receptor alpha, CYP19, catechol-O-methyltransferase are associated with familial prostate carcinoma risk in a Japanese population. Cancer 198:1411–1416CrossRefGoogle Scholar
  60. 60.
    Fukatsu T, Hirokawa Y, Araki T, Hioki T, Murata T, Suzuki H, Ichikawa T, Tsukino H, Qiu D, Katoh T, Sugimura Y, Yatani R, Shiraishi T, Watanabe M (2004) Genetic polymorphisms of hormone-related genes and prostate cancer risk in the Japanese population. Anticancer Res 24:2431–2437PubMedGoogle Scholar
  61. 61.
    Mononen N, Seppälä EH, Duggal P, Autio V, Ikonen T, Ellonen P, Saharinen J, Saarela J, Vihinen M, Tammela TL, Kallioniemi O, Bailey-Wilson JE, Schleutker J (2006) Profiling genetic variation along the androgen biosynthesis and metabolism pathways implicates several single nucleotide polymorphisms and their combinations as prostate cancer risk factors. Cancer Res 66:743–747PubMedCrossRefGoogle Scholar
  62. 62.
    Li L, Cicek MS, Casey G, Witte JS (2004) No association between a tetranucleotide repeat polymorphism of CYP19 and prostate cancer. Cancer Epidemiol Biomarkers Prev 13:2280–2281PubMedGoogle Scholar
  63. 63.
    Candore G, Balistreri CR, Grimaldi MP, Listì F, Vasto S, Chiappelli M, Licastro F, Colonna-Romano G, Lio D, Caruso C (2007) Polymorphisms of pro-inflammatory genes and Alzheimer’s disease risk: a pharmacogenomic approach. Mech Ageing Dev 128:67–75PubMedCrossRefGoogle Scholar
  64. 64.
    Listì F, Caruso M, Incalcaterra E, Hoffmann E, Caimi G, Balistreri CT, Vasto S, Scafidi V, Caruso C, Candore G (2008) Pro-inflammatory gene variants in myocardial infarction and longevity: implications for pharmacogenomics. Curr Pharm Des 14:2678–2685PubMedCrossRefGoogle Scholar
  65. 65.
    Vane JR, Bakhle YS, Botting RM (1998) Cyclooxigenase 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120PubMedCrossRefGoogle Scholar
  66. 66.
    Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271:33157–33160PubMedCrossRefGoogle Scholar
  67. 67.
    Taketo MM (1998) COX-2 and colon cancer. Inflamm Res 47:S112–S116PubMedCrossRefGoogle Scholar
  68. 68.
    Fujita H, Koshida K, Keller ET, Takahashi Y, Yoshimito T, Namiki M, Mizokami A (2002) Cyclooxygenase-2 promotes prostate cancer progression. Prostate 53:232–240PubMedCrossRefGoogle Scholar
  69. 69.
    Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, Bartlett JM (2004) Her2 and COX2 expression in human prostate cancer. Eur J Cancer 40:50–55PubMedCrossRefGoogle Scholar
  70. 70.
    Aparicio Gallego G, Díaz Prado S, Jiménez Fonseca P, García Campelo R, Cassinello Espinosa J, Antón Aparicio LM (2007) Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clin Transl Oncol 9:694–702PubMedCrossRefGoogle Scholar
  71. 71.
    Wang W, Bergh A, Damber JE (2004) Chronic inflammation in benign prostate hyperplasia is associated with focal upregulation of cyclooxygenase-2, Bcl-2, and cell proliferation in the glandular epithelium. Prostate 61:60–72PubMedCrossRefGoogle Scholar
  72. 72.
    Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073PubMedGoogle Scholar
  73. 73.
    Lin DW, Nelson PS (2003) The role of cyclooxygenase-2 inhibition for the prevention and treatment of prostate carcinoma. Clin Prostate Cancer 2:119–126PubMedGoogle Scholar
  74. 74.
    Basler JW, Piazza GA (2004) Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 selective inhibitors for prostate cancer chemoprevention. J Urol 171:S59–S62PubMedCrossRefGoogle Scholar
  75. 75.
    Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102PubMedCrossRefGoogle Scholar
  76. 76.
    Singh A, Purohit A, Ghilchik MW, Reed MJ (1999) The regulation of aromatase activity in breast fibroblasts: the role of interleukin-6 and prostaglandin E2. Endocr Relat Cancer 6:139–147PubMedCrossRefGoogle Scholar
  77. 77.
    Zhao Y, Agarwal VR, Mendelson CR, Simpson ER (1996) Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137:5739–5742PubMedCrossRefGoogle Scholar
  78. 78.
    Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE, Robertson FM (1999) Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 140:27–35PubMedCrossRefGoogle Scholar
  79. 79.
    Frasor J, Weaver AE, Pradhan M, Mehta K (2008) Synergistic upregulation of prostaglandin E synthase expression in breast cancer cells by 17b-estradiol and pro-inflammatory cytokines. Endocrinology 149(12):6272–6279PubMedCrossRefGoogle Scholar
  80. 80.
    Fritsche E, Baek SJ, King LM, Zeldin DC, Eling TE, Bell DA (2001) Functional characterization of cyclooxygenase-2 polymorphisms. J Pharmacol Exp Ther 299:468–476PubMedGoogle Scholar
  81. 81.
    Panguluri RC, Long LO, Chen W, Wang S, Coulibaly A, Ukoli F, Jackson A, Weinrich S, Ahaghotu C, Isaacs W, Kittles RA (2004) COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 25:961–966PubMedCrossRefGoogle Scholar
  82. 82.
    Shahedi K, Lindström S, Zheng SL, Wiklund F, Adolfsson J, Sun J, Augustsson-Bälter K, Chang BL, Adami HO, Liu W, Grönberg H, Xu J (2006) Genetic variation in the COX-2 gene and the association with prostate cancer risk. Int J Cancer 119:668–672PubMedCrossRefGoogle Scholar
  83. 83.
    Hedelin M, Chang ET, Wiklund F, Bellocco R, Klint A, Adolfsson J, Shahedi K, Xu J, Adami HO, Grönberg H, Bälter KA (2007) Association of frequent consumption of fatty fish with prostate cancer risk is modified by COX-2 polymorphism. Int J Cancer 120:398–405PubMedCrossRefGoogle Scholar
  84. 84.
    Chen YQ, Duniec ZM, Liu B, Hagmann W, Gao X, Shimoji K, Marnett LJ, Johnson CR, Honn KV (1994) Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Res 54:1574–1579PubMedGoogle Scholar
  85. 85.
    Steele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA, Sigman CC, Kelloff GJ (1999) Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 8:467–483PubMedGoogle Scholar
  86. 86.
    Ghosh J, Myers CE (1998) Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci USA 95:13182–13187PubMedCrossRefGoogle Scholar
  87. 87.
    Gupta S, Srivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H (2001) Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91:737–743PubMedCrossRefGoogle Scholar
  88. 88.
    Franceschi C, Motta L, Motta M, Malaguarnera M, Capri M, Vasto S, Candore G, Caruso C, IMUSCE (2008) The extreme longevity: the state of the art in Italy. Exp Gerontol 43:45–52PubMedCrossRefGoogle Scholar
  89. 89.
    Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19:3–10PubMedCrossRefGoogle Scholar
  90. 90.
    Uematsu S, Akira S (2008) Toll-like receptors (TLRs) and their ligands. Handb Exp Pharmacol 183:1–20PubMedCrossRefGoogle Scholar
  91. 91.
    Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519PubMedCrossRefGoogle Scholar
  92. 92.
    Balistreri CR, Grimaldi MP, Chiappelli M, Licastro F, Castiglia L, Listì F, Vasto S, Lio D, Caruso C, Candore G (2008) Association between the polymorphisms of TLR4 and CD14 genes and Alzheimer’s disease. Curr Pharm Des 14:2672–2677PubMedCrossRefGoogle Scholar
  93. 93.
    Balistreri CR, Candore G, Colonna-Romano G, Lio D, Caruso M, Hoffmann E, Franceschi C, Caruso C (2004) Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA 292:2339–2340PubMedCrossRefGoogle Scholar
  94. 94.
    Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13:460–469PubMedCrossRefGoogle Scholar
  95. 95.
    Tsan MF (2006) Toll-like receptors, inflammation and cancer. Semin Cancer Biol 16:32–37PubMedCrossRefGoogle Scholar
  96. 96.
    Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G (2008) Cancers take their toll: the function and regulation of Toll-like receptors in cancer cells. Oncogene 27:225–233PubMedCrossRefGoogle Scholar
  97. 97.
    Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, Wang JM (2007) Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 7:1271–1285PubMedCrossRefGoogle Scholar
  98. 98.
    Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRefGoogle Scholar
  99. 99.
    Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014PubMedCrossRefGoogle Scholar
  100. 100.
    Huang B, Zhao J, Shen S, Li H, He KL, Shen GX, Mayer L, Unkeless J, Li D, Yuan Y, Zhang GM, Xiong H, Feng ZH (2007) Listeria monocytogenes promote tumor growth via tumor cell Toll-like receptor 2 signaling. Cancer Res 67:4346–4352PubMedCrossRefGoogle Scholar
  101. 101.
    Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66:3859–3868PubMedCrossRefGoogle Scholar
  102. 102.
    Nelson WG, De Marzo AM, Isaacs WB (2003) Prostate cancer. N Engl J Med 349:366–381PubMedCrossRefGoogle Scholar
  103. 103.
    Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedCrossRefGoogle Scholar
  104. 104.
    Zheng SL, Augustsson-Bälter K, Chang B, Hedelin M, Li L, Adami HO, Bensen J, Li G, Johnasson JE, Turner AR, Adams TS, Meyers DA, Isaacs WB, Xu J, Grönberg H (2004) Sequence variants of Toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Res 64:2918–2922PubMedCrossRefGoogle Scholar
  105. 105.
    Chen YC, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ (2005) Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res 65:11771–11778PubMedCrossRefGoogle Scholar
  106. 106.
    Cheng I, Plummer SJ, Casey G, Witte JS (2007) Toll-like receptor 4 genetic variation and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16:352–355PubMedCrossRefGoogle Scholar
  107. 107.
    Sun J, Wiklund F, Zheng SL, Chang B, Bälter K, Li L, Johansson JE, Li G, Adami HO, Liu W, Tolin A, Turner AR, Meyers DA, Isaacs WB, Xu J, Grönberg H (2005) Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 97:525–532PubMedCrossRefGoogle Scholar
  108. 108.
    Chen YC, Giovannucci E, Kraft P, Lazarus R, Hunter DJ (2007) Association between Toll-like receptor gene cluster (TLR6, TLR1, and TLR10) and prostate cancer. Cancer Epidemiol Biomarkers Prev 16:1982–1989PubMedCrossRefGoogle Scholar
  109. 109.
    Stevens VL, Hsing AW, Talbot JT, Zheng SL, Sun J, Chen J, Thun MJ, Xu J, Calle EE, Rodriguez C (2008) Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) and prostate cancer risk. Int J Cancer. 123(11):2644–2650PubMedCrossRefGoogle Scholar
  110. 110.
    Kramer G, Mitteregger D, Marberger M (2007) Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol 51:1202–1216PubMedCrossRefGoogle Scholar
  111. 111.
    Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705PubMedCrossRefGoogle Scholar
  112. 112.
    Miyazono K, Suzuki H, Imamura T (2003) Regulation of TGF-beta signalling and its roles in progression of tumors. Cancer Sci 94:230–234PubMedCrossRefGoogle Scholar
  113. 113.
    Brattain MG, Howell G, Sun LZ, Willson JK (1994) Growth factor balance and tumor progression. Curr Opin Oncol 6:77–81PubMedCrossRefGoogle Scholar
  114. 114.
    Fynan TM, Reiss M (1993) Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev Oncog 4:493–540PubMedGoogle Scholar
  115. 115.
    Cambien F, Ricard S, Troesch A, Mallet C, Générénaz L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O (1996) Polymorphisms of the transforming growth factor beta 1 gene in relation to myocardial infarction and blood pressure. Hypertension 28:881–887PubMedGoogle Scholar
  116. 116.
    Randall LL, Hardy SJ (1989) Unity in function in the absence of consensus in sequence: role of leader peptides in export. Science 243:1156–1159PubMedCrossRefGoogle Scholar
  117. 117.
    Faria PC, Saba K, Freitas Neves A, Cordeiro ER, Marangoni K, Garcia Freitas D, Goulart LR (2007) Transforming growth factor-beta 1 gene polymorphisms and expression in the blood of prostate cancer patients. Cancer Invest 25:726–732PubMedCrossRefGoogle Scholar
  118. 118.
    Arend WP, Malyak M, Guthridge CJ, Gabay C (1998) Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 16:27–55PubMedCrossRefGoogle Scholar
  119. 119.
    Dinarello CA (1994) The interleukin-1 family: 10 years of discovery. FASEB J 8:1314–1325PubMedGoogle Scholar
  120. 120.
    Giri D, Ittmann M (2000) Interleukin-1β is a paracrine inducer of FGF7, a key epithelial growth factor in benign prostatic hyperplasia. Am J Pathol 157:249–255PubMedGoogle Scholar
  121. 121.
    Castro P, Giri D, Lamb D, Ittmann M (2003) Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55:30–38PubMedCrossRefGoogle Scholar
  122. 122.
    Ricote M, García-Tuñón I, Bethencourt FR, Fraile B, Paniagua R, Royuela M (2004) Interleukin-1 (IL-1α and IL-1β) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate carcinoma. Cancer 7:1388–1396CrossRefGoogle Scholar
  123. 123.
    Konwar R, Gara R, Singh M, Singh V, Chattopadhyay N, Bid HK (2008) Association of interleukin-4 and interleukin-1 receptor antagonist gene polymorphisms and risk of benign prostatic hyperplasia. Urology 71:868–872PubMedCrossRefGoogle Scholar
  124. 124.
    Cheng I, Krumroy LM, Plummer SJ, Casey G, Witte JS (2007) MIC1 and IL1RN genetic variation and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16:1309–1311PubMedCrossRefGoogle Scholar
  125. 125.
    Lindmark F, Zheng SL, Wiklund F, Bälter KA, Sun J, Chang B, Hedelin M, Clark J, Johansson JE, Meyers DA, Adami HO, Isaacs W, Grönberg H, Xu J (2005) Interleukin-1 receptor antagonist haplotype associated with prostate cancer risk. Br J Cancer 93:493–497PubMedCrossRefGoogle Scholar
  126. 126.
    Liu Y, Lin N, Huang L, Xu Q, Pang G (2007) Genetic polymorphisms of the interleukin-18 gene and risk of prostate cancer. DNA Cell Biol 26:613–618PubMedCrossRefGoogle Scholar
  127. 127.
    Giedraitis V, He B, Huang WX, Hillert J (2001) Cloning and mutation analysis of IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol 112:146–152PubMedCrossRefGoogle Scholar
  128. 128.
    Sugiura T, Kawaguchi Y, Harigai M, Terajima-Ichida H, Kitamura Y, Furuya T, Ichikawa N, Kotake S, Tanaka M, Hara M, Kamatani N (2002) Association between adult-onset Still’s disease and interleukin-18 gene polymorphisms. Genes Immun 3:394–399PubMedCrossRefGoogle Scholar
  129. 129.
    Moore BB, Arenberg DA, Stoy K, Morgan T, Addison CL, Morris SB, Glass M, Wilke C, Xue YY, Sitterding S, Kunkel SL, Burdick MD, Strieter RM (1999) Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol 154:1503–1512PubMedGoogle Scholar
  130. 130.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 174:1209–1220PubMedCrossRefGoogle Scholar
  131. 131.
    Stearns ME, Rhim J, Wang M (1999) Interleukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis: IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of matrix metalloproteinase (MMP)-2/MMP-9 secretion. Clin Cancer Res 5:189–196PubMedGoogle Scholar
  132. 132.
    Eder T, Mayer R, Langsenlehner U, Renner W, Krippl P, Wascher TC, Pummer K, Kapp KS (2007) Interleukin-10 [ATA] promoter haplotype and prostate cancer risk: a population-based study. Eur J Cancer 43:472–475PubMedCrossRefGoogle Scholar
  133. 133.
    Faupel-Badger JM, Kidd LC, Albanes D, Virtamo J, Woodson K, Tangrea JA (2008) Association of IL-10 polymorphisms with prostate cancer risk and grade of disease. Cancer Causes Control 19:119–124PubMedCrossRefGoogle Scholar
  134. 134.
    McCarron SL, Edwards S, Evans PR, Gibbs R, Dearnaley DP, Dowe A, Southgate C, Easton DF, Eeles RA, Howell WM (2002) Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res 62:3369–3372PubMedGoogle Scholar
  135. 135.
    Michaud DS, Daugherty SE, Berndt SI, Platz EA, Yeager M, Crawford ED, Hsing A, Huang WY, Hayes RB (2006) Genetic polymorphisms of interleukin-1B (IL-1B), IL-6, IL-8, and IL-10 and risk of prostate cancer. Cancer Res 66:4525–4530PubMedCrossRefGoogle Scholar
  136. 136.
    Yang HP, Woodson K, Taylor PR, Pietinen P, Albanes D, Virtamo J, Tangrea JA (2006) Genetic variation in interleukin 8 and its receptor genes and its influence on the risk and prognosis of prostate cancer among Finnish men in a large cancer prevention trial. Eur J Cancer Prev 15:249–253PubMedCrossRefGoogle Scholar
  137. 137.
    Zabaleta J, Lin H-Y, Sierra RA, Hall CM, Clark PE, Sartor OA, Hu JJ, Ochoa AC (2008) Interactions of cytokine gene polymorphisms in prostate cancer risk. Carcinogenesis 29:573–578PubMedCrossRefGoogle Scholar
  138. 138.
    Vaday GG, Peehl DM, Kadam PA, Lawrence DM (2006) Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 66:124–134PubMedCrossRefGoogle Scholar
  139. 139.
    König JE, Senge T, Allhoff EP, König W (2004) Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer. Prostate 58:121–129PubMedCrossRefGoogle Scholar
  140. 140.
    Balistreri CR, Carruba G, Calabrò M, Campisi I, Di Carlo D, Lio D, Colonna-Romano G, Candore G, Caruso C (2009) CCR5 proinflammatory allele in prostate cancer risk: a pilot study in patients and centenarians from Sicily. Ann NY Acad Sci (in press)Google Scholar
  141. 141.
    Damber JE, Aus G (2008) Prostate cancer. Lancet 371:1710–1721PubMedCrossRefGoogle Scholar
  142. 142.
    Xu J, Lowey J, Wiklund F, Sun J, Lindmark F, Hsu F-C, Dimitrov L, Chang B, Turner AR, Liu W, Adami H-O, Suh E, Moore JH, Zheng SL, Isaacs WB, Trent JM, Groënberg H (2005) The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prev 14:2563–2568PubMedCrossRefGoogle Scholar
  143. 143.
    Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83PubMedCrossRefGoogle Scholar
  144. 144.
    Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324–329PubMedCrossRefGoogle Scholar
  145. 145.
    Miyaishi O, Ando F, Matsuzawa K, Kanawa R, Isobe K (2000) Cancer incidence in old age. Mech Ageing Dev 117:47–55PubMedCrossRefGoogle Scholar
  146. 146.
    Stanta G, Campagner L, Cavallieri F, Giarelli L (1997) Cancer of the oldest old: what we have learned from autopsy studies. Clin Geriatr Med 13:55–68PubMedGoogle Scholar
  147. 147.
    Vasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP, Listi F, Nuzzo D, Lio D, Caruso C (2007) Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 128:83–91PubMedCrossRefGoogle Scholar
  148. 148.
    Capri M, Salvioli S, Monti D, Caruso C, Candore G, Vasto S, Olivieri F, Marchegiani F, Sansoni P, Baggio G, Mari D, Passarino G, De Benedictis G, Franceschi C (2008) Human longevity within an evolutionary perspective: the peculiar paradigm of a post-reproductive genetics. Exp Gerontol 43:53–60PubMedCrossRefGoogle Scholar
  149. 149.
    Di Bona D, Vasto S, Capurso C, Christiansen L, Deiana L, Franceschi C, Hurme M, Mocchegiani E, Rea M, Lio D, Candore G, Caruso C (2009) Effect of interleukin-6 polymorphisms on human longevity: a systematic review and meta-analysis. Ageing Res Rev 8:36–42PubMedCrossRefGoogle Scholar
  150. 150.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  151. 151.
    Imyanitov EN (2008) Use of elderly tumor-free subjects as a "supercontrol" for cancer epidemiological studies: pros and cons. Mech Ageing Dev 130:122–127PubMedCrossRefGoogle Scholar
  152. 152.
    van Heemst D, Mooijaart SP, Beekman M, Schreuder J, de Craen AJ, Brandt BW, Slagboom PE, Westendorp RG, Long Life study group (2005) Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol 40:11–15PubMedCrossRefGoogle Scholar
  153. 153.
    Sardana G, Dowell B, Diamandis EP (2008) Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin Chem 54(12):1951–1960PubMedCrossRefGoogle Scholar
  154. 154.
    Vasto S, Candore G, Duro G, Lio D, Grimaldi MP, Caruso C (2007) Alzheimer’s disease and genetics of inflammation: a pharmacogenomic vision. Pharmacogenomics 8:1735–1745PubMedCrossRefGoogle Scholar
  155. 155.
    Candore G, Balistreri CR, Caruso M, Grimaldi MP, Incalcaterra E, Listì F, Vasto S, Caruso C (2007) Pharmacogenomics: a tool to prevent and cure coronary heart disease. Curr Pharm Des 13:3726–3734PubMedCrossRefGoogle Scholar
  156. 156.
    Sooriakumaran P, Kaba R (2005) The risks and benefits of cyclo-oxygenase-2 inhibitors in prostate cancer: a review. Int J Surg 3:278–285PubMedCrossRefGoogle Scholar
  157. 157.
    Puppo F, Murdaca G, Ghio M, Indiveri F (2005) Emerging biologic drugs for the treatment of rheumatoid arthritis. Autoimmun Rev 4:537–541PubMedCrossRefGoogle Scholar
  158. 158.
    Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR (2003) A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 63:8360–8365PubMedGoogle Scholar
  159. 159.
    Wang RF Y, Miyahara Y, Wang HY (2008) Toll-like receptors and immune regulation: implications for cancer therapy. Oncogene 27:181–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Calogero Caruso
    • 1
    • 2
  • Carmela Rita Balistreri
    • 1
  • Giuseppina Candore
    • 1
  • Giuseppe Carruba
    • 1
    • 3
  • Giuseppina Colonna-Romano
    • 1
  • Danilo Di Bona
    • 1
    • 2
    • 4
  • Giusi Irma Forte
    • 1
    • 5
  • Domenico Lio
    • 1
    • 5
  • Florinda Listì
    • 1
  • Letizia Scola
    • 1
    • 2
    • 5
  • Sonya Vasto
    • 1
    • 2
  1. 1.Gruppo di Studio sull’Immunosenescenza, Dipartimento di Biopatologia e Metodologie BiomedicheUniversità di PalermoPalermoItaly
  2. 2.Medicina Trasfusionale ed ImmunoematologiaOspedale UniversitarioPalermoItaly
  3. 3.Oncologia Sperimentale, Dipartimento di OncologiaARNAS-Ospedale CivicoPalermoItaly
  4. 4.Istituto di Biomedicina ed Immunologia MolecolareConsiglio Nazionale delle RicerchePalermoItaly
  5. 5.Cattedra di Patologia Clinica, Dipartimento di Biopatologia e Metodologie BiomedicheUniversità di PalermoPalermoItaly

Personalised recommendations