Fit for purpose? A case study: validation of immunological endpoint assays for the detection of cellular and humoral responses to anti-tumour DNA fusion vaccines

  • Ann Mander
  • Ferdousi Chowdhury
  • Lindsey Low
  • Christian H. Ottensmeier
Focussed Research Review

Abstract

Clinical trials are governed by an increasingly stringent regulatory framework, which applies to all levels of trial conduct. Study critical immunological endpoints, which define success or failure in early phase clinical immunological trials, require formal pre-trial validation. In this case study, we describe the assay validation process, during which the sensitivity, and precision of immunological endpoint assays were defined. The purpose was the evaluation of two multicentre phase I/II clinical trials from our unit in Southampton, UK, which assess the effects of DNA fusion vaccines on immune responses in HLA-A2+ patients with carcinoembryonic antigen (CEA)-expressing malignancies and prostate cancer. Validated immunomonitoring is being performed using ELISA and IFNγ ELISPOTs to assess humoral and cellular responses to the vaccines over time. The validated primary endpoint assay, a peptide-specific CD8+ IFNγ ELISPOT, was tested in a pre-trial study and found to be suitable for the detection of low frequency naturally occurring CEA- and prostate-derived tumour-antigen-specific T cells in patients with CEA-expressing malignancies and prostate cancer.

Keywords

Immunotherapy Immunomonitoring Assay validation DNA fusion vaccine CEA PSMA 

References

  1. 1.
    Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev 8:108–120Google Scholar
  2. 2.
    Fontaine N, Rosengren B (2001) Directive 2001/20/EC implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. Official Journal of the European Communities L121:34Google Scholar
  3. 3.
    HMSO (2004) UK Statutory Instrument No. 1031. The medicines for human use (clinical trials) regulations. HMSO, LondonGoogle Scholar
  4. 4.
    HMSO (2006) UK Statutory Instrument No. 1928. The medicines for human use (clinical trials) amendment regulations. HMSOGoogle Scholar
  5. 5.
    ICH harmonised tripartite guidelines for good clinical practice. CPMP/ICH/135/95/1997. http://www.emea.europa.eu/pdfs/human/ich/013595en.pdf
  6. 6.
    Britten CM, Gouttefangeas C, Welters MJ, Pawelec G, Koch S, Ottensmeier C, Mander A, Walter S, Paschen A, Muller-Berghaus J, Haas I, Mackensen A, Kollgaard T, Thor Straten P, Schmitt M, Giannopoulos K, Maier R, Veelken H, Bertinetti C, Konur A, Huber C, Stevanovic S, Wolfel T, van der Burg SH (2008) The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother 57:289–302PubMedCrossRefGoogle Scholar
  7. 7.
    Britten CM, Janetzki S, van der Burg SH, Gouttefangeas C, Hoos A (2008) Toward the harmonization of immune monitoring in clinical trials: quo vadis? Cancer Immunol Immunother 57:285–288PubMedCrossRefGoogle Scholar
  8. 8.
    Janetzki S, Panageas KS, Ben-Porat L, Boyer J, Britten CM, Clay TM, Kalos M, Maecker HT, Romero P, Yuan J, Kast WM, Hoos A (2008) Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol Immunother 57:303–315PubMedCrossRefGoogle Scholar
  9. 9.
    Maecker HT, Hassler J, Payne JK, Summers A, Comatas K, Ghanayem M, Morse MA, Clay TM, Lyerly HK, Bhatia S, Ghanekar SA, Maino VC, Delarosa C, Disis ML (2008) Precision and linearity targets for validation of an IFNgamma ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides. BMC Immunol 9:9PubMedCrossRefGoogle Scholar
  10. 10.
    Malyguine A, Strobl SL, Shafer-Weaver KA, Ulderich T, Troke A, Baseler M, Kwak LW, Neelapu SS (2004) A modified human ELISPOT assay to detect specific responses to primary tumor cell targets. J Transl Med 2:9PubMedCrossRefGoogle Scholar
  11. 11.
    Scheibenbogen C, Romero P, Rivoltini L, Herr W, Schmittel A, Cerottini JC, Woelfel T, Eggermont AM, Keilholz U (2000) Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. J Immunol Methods 244:81–89PubMedCrossRefGoogle Scholar
  12. 12.
    Shreffler WG, Visness CM, Burger M, Cruikshank WW, Lederman HM, de la Morena M, Grindle K, Calatroni A, Sampson HA, Gern JE (2006) Standardization and performance evaluation of mononuclear cell cytokine secretion assays in a multicenter study. BMC Immunol 7:29PubMedCrossRefGoogle Scholar
  13. 13.
    Smith JG, Joseph HR, Green T, Field JA, Wooters M, Kaufhold RM, Antonello J, Caulfield MJ (2007) Establishing acceptance criteria for cell-mediated-immunity assays using frozen peripheral blood mononuclear cells stored under optimal and suboptimal conditions. Clin Vaccine Immunol 14:527–537PubMedCrossRefGoogle Scholar
  14. 14.
    Rice J, Dunn S, Piper K, Buchan SL, Moss PA, Stevenson FK (2006) DNA fusion vaccines induce epitope-specific cytotoxic CD8(+) T cells against human leukemia-associated minor histocompatibility antigens. Cancer Res 66:5436–5442PubMedCrossRefGoogle Scholar
  15. 15.
    Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, Janetzki S, Ferrari G, Birx DL, Cox JH (2002) A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. J Immunol Methods 260:157–172PubMedCrossRefGoogle Scholar
  16. 16.
    van Els CA, Herberts CA, van der Heeft E, Poelen MC, den Brink JA, van der Kooi A, Hoogerhout P, Jan ten Hove G, Meiring HD, de Jong AP (2000) A single naturally processed measles virus peptide fully dominates the HLA-A*0201-associated peptide display and is mutated at its anchor position in persistent viral strains. Eur J Immunol 30:1172–1181PubMedCrossRefGoogle Scholar
  17. 17.
    Tsomides TJ, Aldovini A, Johnson RP, Walker BD, Young RA, Eisen HN (1994) Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J Exp Med 180:1283–1293PubMedCrossRefGoogle Scholar
  18. 18.
    Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990PubMedCrossRefGoogle Scholar
  19. 19.
    Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997) Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57:4570–4577PubMedGoogle Scholar
  20. 20.
    Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A, Celis E (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1–14PubMedCrossRefGoogle Scholar
  21. 21.
    Lu J, Celis E (2002) Recognition of prostate tumor cells by cytotoxic T lymphocytes specific for prostate-specific membrane antigen. Cancer Res 62:5807–5812PubMedGoogle Scholar
  22. 22.
    FDA (2001) Guidance for industry: bioanalytical method validation. Marcel Dekker, New YorkGoogle Scholar
  23. 23.
    Miller KJ, Bowsher RR, Celniker A, Gibbons J, Gupta S, Lee JW, Swanson SJ, Smith WC, Weiner RS (2001) Workshop on bioanalytical methods validation for macromolecules: summary report. Pharm Res 18:1373–1383PubMedCrossRefGoogle Scholar
  24. 24.
    Stiles T, Grant V, Mawbey N (2001) Good clinical laboratory practice. British Association for Research into Quality Assurance (BARQA), CambridgeGoogle Scholar
  25. 25.
    Di Genova G, Roddick J, McNicholl F, Stevenson FK (2006) Vaccination of human subjects expands both specific and bystander memory T cells but antibody production remains vaccine specific. Blood 107:2806–2813PubMedCrossRefGoogle Scholar
  26. 26.
    Mander A, McCann K, Di Genova G, Roddick J, Low L, Johnson PW, Hamblin T, Stevenson FK, Ottensmeier C (2007) DNA fusion vaccination in follicular lymphoma: induction of anti-idiotypic immune responses in patients with follicular lymphoma. National Cancer Research Institute (NCRI) Conference 2007:Abstract LB65Google Scholar
  27. 27.
    Kreher CR, Dittrich MT, Guerkov R, Boehm BO, Tary-Lehmann M (2003) CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J Immunol Methods 278:79–93PubMedCrossRefGoogle Scholar
  28. 28.
    Smith JG, Liu X, Kaufhold RM, Clair J, Caulfield MJ (2001) Development and validation of a gamma interferon ELISPOT assay for quantitation of cellular immune responses to varicella-zoster virus. Clin Diagn Lab Immunol 8:871–879PubMedCrossRefGoogle Scholar
  29. 29.
    Maecker HT, Moon J, Bhatia S, Ghanekar SA, Maino VC, Payne JK, Kuus-Reichel K, Chang JC, Summers A, Clay TM, Morse MA, Lyerly HK, DeLaRosa C, Ankerst DP, Disis ML (2005) Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT. BMC Immunol 6:17PubMedCrossRefGoogle Scholar
  30. 30.
    Lathey JL (2003) Preliminary steps toward validating a clinical bioassay: a case study of the ELIspot assay. Biopharm IntGoogle Scholar
  31. 31.
    Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, Muller CA, Pircher H, Pawelec G (2003) Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 38:911–920PubMedCrossRefGoogle Scholar
  32. 32.
    Cummings J, Ward TH, Greystoke A, Ranson M, Dive C (2008) Biomarker method validation in anticancer drug development. Br J Pharmacol 153:646–656PubMedCrossRefGoogle Scholar
  33. 33.
    Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML, Kirkwood JM, Scheibenbogen C, Schlom J, Maino VC, Lyerly HK, Lee PP, Storkus W, Marincola F, Worobec A, Atkins MB (2002) Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother 25:97–138PubMedCrossRefGoogle Scholar
  34. 34.
    Diefenbach CS, Gnjatic S, Sabbatini P, Aghajanian C, Hensley ML, Spriggs DR, Iasonos A, Lee H, Dupont B, Pezzulli S, Jungbluth AA, Old LJ, Dupont J (2008) Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin Cancer Res 14:2740–2748PubMedCrossRefGoogle Scholar
  35. 35.
    Butterfield LH, Comin-Anduix B, Vujanovic L, Lee Y, Dissette VB, Yang JQ, Vu HT, Seja E, Oseguera DK, Potter DM, Glaspy JA, Economou JS, Ribas A (2008) Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother 31:294–309PubMedCrossRefGoogle Scholar
  36. 36.
    Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J, Fleuren GJ, Offringa R, Melief CJ, van der Burg SH (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14:178–187PubMedCrossRefGoogle Scholar
  37. 37.
    Harrop R, Drury N, Shingler W, Chikoti P, Redchenko I, Carroll MW, Kingsman SM, Naylor S, Griffiths R, Steven N, Hawkins RE (2008) Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses. Cancer Immunol Immunother 57:977–986PubMedCrossRefGoogle Scholar
  38. 38.
    Miller AM, Ozenci V, Kiessling R, Pisa P (2005) Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J Immunother 28:389–395PubMedCrossRefGoogle Scholar
  39. 39.
    Waeckerle-Men Y, Uetz-von Allmen E, Fopp M, von Moos R, Bohme C, Schmid HP, Ackermann D, Cerny T, Ludewig B, Groettrup M, Gillessen S (2006) Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol Immunother 55:1524–1533PubMedCrossRefGoogle Scholar
  40. 40.
    Coulie PG, van der Bruggen P (2003) T-cell responses of vaccinated cancer patients. Curr Opin Immunol 15:131–137PubMedCrossRefGoogle Scholar
  41. 41.
    Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8:247–258PubMedCrossRefGoogle Scholar
  42. 42.
    Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U (2003) Natural T cell immunity against cancer. Clin Cancer Res 9:4296–4303PubMedGoogle Scholar
  43. 43.
    Nagorsen D, Scheibenbogen C, Schaller G, Leigh B, Schmittel A, Letsch A, Thiel E, Keilholz U (2003) Differences in T-cell immunity toward tumor-associated antigens in colorectal cancer and breast cancer patients. Int J Cancer 105:221–225PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ann Mander
    • 1
  • Ferdousi Chowdhury
    • 1
  • Lindsey Low
    • 1
  • Christian H. Ottensmeier
    • 1
  1. 1.Cancer Sciences Division, School of Medicine, Southampton General HospitalUniversity of SouthamptonSouthamptonUK

Personalised recommendations