Cancer Immunology, Immunotherapy

, Volume 58, Issue 6, pp 915–930 | Cite as

Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells

  • Panagiotis Karagiannis
  • Josef Singer
  • James Hunt
  • Samuel K. E. Gan
  • Sarah M. Rudman
  • Diana Mechtcheriakova
  • Regina Knittelfelder
  • Tracy R. Daniels
  • Philip S. Hobson
  • Andrew J. Beavil
  • James Spicer
  • Frank O. Nestle
  • Manuel L. Penichet
  • Hannah J. Gould
  • Erika Jensen-Jarolim
  • Sophia N. Karagiannis
Original Article

Abstract

Trastuzumab (Herceptin®), a humanized IgG1 antibody raised against the human epidermal growth factor receptor 2 (HER2/neu), is the main antibody in clinical use against breast cancer. Pre-clinical evidence and clinical studies indicate that trastuzumab employs several anti-tumour mechanisms that most likely contribute to enhanced survival of patients with HER2/neu-positive breast carcinomas. New strategies are aimed at improving antibody-based therapeutics like trastuzumab, e.g. by enhancing antibody-mediated effector function mechanisms. Based on our previous findings that a chimaeric ovarian tumour antigen-specific IgE antibody showed greater efficacy in tumour cell killing, compared to the corresponding IgG1 antibody, we have produced an IgE homologue of trastuzumab. Trastuzumab IgE was engineered with the same light- and heavy-chain variable-regions as trastuzumab, but with an epsilon in place of the gamma-1 heavy-chain constant region. We describe the physical characterisation and ligand binding properties of the trastuzumab IgE and elucidate its potential anti-tumour activities in functional assays. Both trastuzumab and trastuzumab IgE can activate monocytic cells to kill tumour cells, but they operate by different mechanisms: trastuzumab functions in antibody-dependent cell-mediated phagocytosis (ADCP), whereas trastuzumab IgE functions in antibody-dependent cell-mediated cytotoxicity (ADCC). Trastuzumab IgE, incubated with mast cells and HER2/neu-expressing tumour cells, triggers mast cell degranulation, recruiting against cancer cells a potent immune response, characteristic of allergic reactions. Finally, in viability assays both antibodies mediate comparable levels of tumour cell growth arrest. These functional characteristics of trastuzumab IgE, some distinct from those of trastuzumab, indicate its potential to complement or improve upon the existing clinical benefits of trastuzumab.

Keywords

HER2/neu Trastuzumab IgE Monocytes Mast cells Tumour immunity 

Abbreviations

HER2/neu

Human epidermal growth factor receptor 2

ADCC

Antibody-dependent cell-mediated cytotoxicity

ADCP

Antibody-dependent cell-mediated phagocytosis

FBP

Folate binding protein

sFcεRIα

Soluble FcεRI α-chain

ECDHER2

HER2 protein extracellular domain

CM

Complete medium

PI

Propidium iodide

CFSE

Carboxy-fluorescein diacetate, succinimidyl ester

NIP

4-Hydroxy-3-nitro-phenacetyl

PI3K

Phosphoinositide 3-kinase

TGF-a

Tumour growth factor α

VEGF

Vascular endothelial growth factor

TNF-α

Tumour necrosis factor-α

MTS

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt)

PMS

Phenazine methosulfate

Notes

Acknowledgments

This work was generously supported by the the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) at Guy’s and St. Thomas’ NHS Foundation Trust/King’s College London, United Kingdom; the Austrian Science Fund (FWF) (P-18238-B13); the European Molecular Biology Organisation (EMBO) (fellowship ASTF258.00-2008); Hans und Blanca Moser Stiftung (AP00326OFF), Austria; NIH/NCI R01 supplement CA107023-02S1, Susan G. Komen Breast Cancer Foundation grant (BCTR0706771) and the 2007–2008 University of California Cancer Research Coordinating Committee seed grant, USA. We thank Dr. Rebecca Beavil, Dr. Pooja Takhar and Mr. Richard Brunner for their helpful comments and Ms. Kate Kirwan for expert assistance with the figures. We are grateful to Dr. Jean-Pierre Kinet and to Dr. Silvana Canevari for the generous provision of advice and materials.

Supplementary material

262_2008_607_MOESM1_ESM.pdf (67 kb)
Amino Acid Sequence of Trastuzumab IgE (PDF 67 kb)

References

  1. 1.
    Rubin I, Yarden Y (2001) The basic biology of HER2. Ann Oncol 12(Suppl 1):S3–S8PubMedCrossRefGoogle Scholar
  2. 2.
    Kaptain S, Tan LK, Chen B (2001) Her-2/neu and breast cancer. Diagn Mol Pathol 10:139–152PubMedCrossRefGoogle Scholar
  3. 3.
    Yarden Y (2001) Biology of HER2 and its importance in breast cancer. Oncology 61(Suppl 2):1–13PubMedCrossRefGoogle Scholar
  4. 4.
    Landgraf R (2007) HER2 therapy. HER2 (ERBB2): functional diversity from structurally conserved building blocks. Breast Cancer Res 9:202PubMedCrossRefGoogle Scholar
  5. 5.
    Hortobagyi GN (2005) Trastuzumab in the treatment of breast cancer. N Engl J Med 353:1734–1736PubMedCrossRefGoogle Scholar
  6. 6.
    Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289PubMedCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22PubMedCrossRefGoogle Scholar
  8. 8.
    Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357:39–51PubMedCrossRefGoogle Scholar
  9. 9.
    Lee-Hoeflich ST, Crocker L, Yao E, Pham T, Munroe X, Hoeflich KP, Sliwkowski MX, Stern HM (2008) A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 68:5878–5887PubMedCrossRefGoogle Scholar
  10. 10.
    Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280PubMedCrossRefGoogle Scholar
  11. 11.
    Barok M, Isola J, Palyi-Krekk Z, Nagy P, Juhasz I, Vereb G, Kauraniemi P, Kapanen A, Tanner M, Szollosi J (2007) Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT—1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 6:2065–2072PubMedCrossRefGoogle Scholar
  12. 12.
    Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A 103:4005–4010PubMedCrossRefGoogle Scholar
  13. 13.
    Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, Castiglioni F, Villani L, Magalotti C, Gibelli N et al (2004) Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10:5650–5655PubMedCrossRefGoogle Scholar
  14. 14.
    Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA (1999) Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26:60–70PubMedGoogle Scholar
  15. 15.
    Riethmuller G, Johnson JP (1992) Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancers. Curr Opin Immunol 4:647–655PubMedCrossRefGoogle Scholar
  16. 16.
    Gould HJ, Takhar P, Harries HE, Durham SR, Corrigan CJ (2006) Germinal-centre reactions in allergic inflammation. Trends Immunol 27:446–452PubMedCrossRefGoogle Scholar
  17. 17.
    Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21:579–628PubMedCrossRefGoogle Scholar
  18. 18.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446PubMedCrossRefGoogle Scholar
  19. 19.
    Geha RS, Helm B, Gould H (1985) Inhibition of the Prausnitz-Kustner reaction by an immunoglobulin epsilon-chain fragment synthesised in E. coli. Nature 315:577–578PubMedCrossRefGoogle Scholar
  20. 20.
    Gonzalez-Espinosa C, Odom S, Olivera A, Hobson JP, Martinez ME, Oliveira-Dos-Santos A, Barra L, Spiegel S, Penninger JM, Rivera J (2003) Preferential signalling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J Exp Med 197:1453–1465PubMedCrossRefGoogle Scholar
  21. 21.
    Riemer AB, Untersmayr E, Knittelfelder R, Duschl A, Pehamberger H, Zielinski CC, Scheiner O, Jensen-Jarolim E (2007) Active induction of tumor-specific IgE antibodies by oral mimotope vaccination. Cancer Res 67:3406–3411PubMedCrossRefGoogle Scholar
  22. 22.
    Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodriguez JA, Siccardi AG, Vangelista L et al (2008) AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy 63:1255–1266PubMedCrossRefGoogle Scholar
  23. 23.
    Reali E, Greiner JW, Corti A, Gould HJ, Bottazzoli F, Paganelli G, Schlom J, Siccardi AG (2001) IgEs targeted on tumor cells: therapeutic activity and potential in the design of tumor vaccines. Cancer Res 61:5517–5522PubMedGoogle Scholar
  24. 24.
    Turner MC, Chen Y, Krewski D, Ghadirian P (2006) An overview of the association between allergy and cancer. Int J Cancer 118:3124–3132PubMedCrossRefGoogle Scholar
  25. 25.
    Turner MC, Chen Y, Krewski D, Ghadirian P, Thun MJ, Calle EE (2005) Cancer mortality among US men and women with asthma and hay fever. Am J Epidemiol 162:212–221PubMedCrossRefGoogle Scholar
  26. 26.
    Nagy E, Berczi I, Sehon AH (1991) Growth inhibition of murine mammary carcinoma by monoclonal IgE antibodies specific for the mammary tumor virus. Cancer Immunol Immunother 34:63–69PubMedCrossRefGoogle Scholar
  27. 27.
    Kershaw MH, Darcy PK, Trapani JA, MacGregor D, Smyth MJ (1998) Tumor-specific IgE-mediated inhibition of human colourectal carcinoma xenograft growth. Oncol Res 10:133–142PubMedGoogle Scholar
  28. 28.
    Riemer AB, Klinger M, Wagner S, Bernhaus A, Mazzucchelli L, Pehamberger H, Scheiner O, Zielinski CC, Jensen-Jarolim E (2004) Generation of peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J Immunol 173:394–401PubMedGoogle Scholar
  29. 29.
    Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR, Zurawski VR Jr, Joseph M, Capron M et al (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29:3527–3537PubMedCrossRefGoogle Scholar
  30. 30.
    Karagiannis SN, Bracher MG, Beavil RL, Beavil AJ, Hunt J, McCloskey N, Thompson RG, East N, Burke F, Sutton BJ et al (2008) Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol Immunother 57:247–263PubMedCrossRefGoogle Scholar
  31. 31.
    Karagiannis SN, Bracher MG, Hunt J, McCloskey N, Beavil RL, Beavil AJ, Fear DJ, Thompson RG, East N, Burke F et al (2007) IgE-antibody-dependent immunotherapy of solid tumors: cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J Immunol 179:2832–2843PubMedGoogle Scholar
  32. 32.
    Karagiannis SN, Wang Q, East N, Burke F, Riffard S, Bracher MG, Thompson RG, Durham SR, Schwartz LB, Balkwill FR et al (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33:1030–1040PubMedCrossRefGoogle Scholar
  33. 33.
    Luiten RM, Fleuren GJ, Warnaar SO, Litvinov SV (1996) Target-specific activation of mast cells by immunoglobulin E reactive with a renal cell carcinoma-associated antigen. Lab Invest 74:467–475PubMedGoogle Scholar
  34. 34.
    Luiten RM, Warnaar SO, Schuurman J, Pasmans SG, Latour S, Daeron M, Fleuren GJ, Litvinov SV (1997) Chimeric immunoglobulin E reactive with tumor-associated antigen activates human Fc epsilon RI bearing cells. Hum Antibodies 8:169–180PubMedGoogle Scholar
  35. 35.
    Teng MW, Kershaw MH, Jackson JT, Smyth MJ, Darcy PK (2006) Adoptive transfer of chimeric FcepsilonRI gene-modified human T cells for cancer immunotherapy. Hum Gene Ther 17:1134–1143PubMedCrossRefGoogle Scholar
  36. 36.
    Cook JP, Henry AJ, McDonnell JM, Owens RJ, Sutton BJ, Gould HJ (1997) Identification of contact residues in the IgE binding site of human FcepsilonRIalpha. Biochemistry 36:15579–15588PubMedCrossRefGoogle Scholar
  37. 37.
    Neuberger MS, Williams GT, Mitchell EB, Jouhal SS, Flanagan JG, Rabbitts TH (1985) A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature 314:268–270PubMedCrossRefGoogle Scholar
  38. 38.
    Dela Cruz JS, Lau SY, Ramirez EM, De Giovanni C, Forni G, Morrison SL, Penichet ML (2003) Protein vaccination with the HER2/neu extracellular domain plus anti-HER2/neu antibody-cytokine fusion proteins induces a protective anti-HER2/neu immune response in mice. Vaccine 21:1317–1326PubMedCrossRefGoogle Scholar
  39. 39.
    Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760PubMedCrossRefGoogle Scholar
  40. 40.
    Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9PubMedCrossRefGoogle Scholar
  41. 41.
    Gan SK, Hunt J, Beavil AJ, Marsh PJ, Harries HE (2008) The design and optimisation of a transient expression system for the rapid expression of human immunoglobulin E. Example cited in GB patent application 61/060,239Google Scholar
  42. 42.
    McDonnell JM, Calvert R, Beavil RL, Beavil AJ, Henry AJ, Sutton BJ, Gould HJ, Cowburn D (2001) The structure of the IgE Cepsilon2 domain and its role in stabilizing the complex with its high-affinity receptor FcepsilonRIalpha. Nat Struct Biol 8:437–441PubMedCrossRefGoogle Scholar
  43. 43.
    Henry AJ, Cook JP, McDonnell JM, Mackay GA, Shi J, Sutton BJ, Gould HJ (1997) Participation of the N-terminal region of Cepsilon3 in the binding of human IgE to its high-affinity receptor FcepsilonRI. Biochemistry 36:15568–15578PubMedCrossRefGoogle Scholar
  44. 44.
    Sundstrom C, Nilsson K (1976) Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 17:565–577PubMedCrossRefGoogle Scholar
  45. 45.
    Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35:2434–2439PubMedGoogle Scholar
  46. 46.
    Griswold DP, Corbett TH (1975) A colon tumor model for anticancer agent evaluation. Cancer 36:2441–2444PubMedCrossRefGoogle Scholar
  47. 47.
    Penichet ML, Challita PM, Shin SU, Sampogna SL, Rosenblatt JD, Morrison SL (1999) In vivo properties of three human HER2/neu-expressing murine cell lines in immunocompetent mice. Lab Anim Sci 49:179–188PubMedGoogle Scholar
  48. 48.
    Wiegand TW, Williams PB, Dreskin SC, Jouvin MH, Kinet JP, Tasset D (1996) High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol 157:221–230PubMedGoogle Scholar
  49. 49.
    Bracher M, Gould HJ, Sutton BJ, Dombrowicz D, Karagiannis SN (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323:160–171PubMedCrossRefGoogle Scholar
  50. 50.
    Bodinier M, Brossard C, Triballeau S, Morisset M, Guerin-Marchand C, Pineau F, de Coppet P, Moneret-Vautrin DA, Blank U, Denery-Papini S (2008) Evaluation of an in vitro mast cell degranulation test in the context of food allergy to wheat. Int Arch Allergy Immunol 146:307–320PubMedCrossRefGoogle Scholar
  51. 51.
    Linko-Lopponen S, Makinen M (1985) A microtiter plate assay for N-acetyl-beta-D-glucosaminidase using a fluorogenic substrate. Anal Biochem 148:50–53PubMedCrossRefGoogle Scholar
  52. 52.
    Casal JA, Chabas A, Tutor JC (2003) Thermodynamic determination of beta-hexosaminidase isoenzymes in mononuclear and polymorphonuclear leukocyte populations. Am J Med Genet A 116A:229–233PubMedCrossRefGoogle Scholar
  53. 53.
    Gerstner RB, Carter P, Lowman HB (2002) Sequence plasticity in the antigen-binding site of a therapeutic anti-HER2 antibody. J Mol Biol 321:851–862PubMedCrossRefGoogle Scholar
  54. 54.
    Posner RG, Geng D, Haymore S, Bogert J, Pecht I, Licht A, Savage PB (2007) Trivalent antigens for degranulation of mast cells. Org Lett 9:3551–3554PubMedCrossRefGoogle Scholar
  55. 55.
    Riemer AB, Jensen-Jarolim E (2007) Mimotope vaccines: epitope mimics induce anti-cancer antibodies. Immunol Lett 113:1–5PubMedCrossRefGoogle Scholar
  56. 56.
    Bramswig KH, Knittelfelder R, Gruber S, Untersmayr E, Riemer AB, Szalai K, Horvat R, Kammerer R, Zimmermann W, Zielinski CC et al (2007) Immunization with mimotopes prevents growth of carcinoembryonic antigen positive tumors in BALB/c mice. Clin Cancer Res 13:6501–6508PubMedCrossRefGoogle Scholar
  57. 57.
    Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Panagiotis Karagiannis
    • 1
    • 7
  • Josef Singer
    • 7
  • James Hunt
    • 2
  • Samuel K. E. Gan
    • 2
  • Sarah M. Rudman
    • 3
  • Diana Mechtcheriakova
    • 7
  • Regina Knittelfelder
    • 7
  • Tracy R. Daniels
    • 4
  • Philip S. Hobson
    • 2
  • Andrew J. Beavil
    • 2
  • James Spicer
    • 3
  • Frank O. Nestle
    • 1
  • Manuel L. Penichet
    • 4
    • 5
    • 6
  • Hannah J. Gould
    • 2
  • Erika Jensen-Jarolim
    • 7
  • Sophia N. Karagiannis
    • 1
  1. 1.Cutaneous Medicine and Immunotherapy Unit, St. John’s Institute of Dermatology, Division of Genetics and Molecular MedicineKing’s College London School of MedicineLondonUK
  2. 2.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
  3. 3.Department of Academic OncologyKing’s College LondonLondonUK
  4. 4.Division of Surgical Oncology, Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  5. 5.Departments of Microbiology, Immunology, and Molecular Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  6. 6.The Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  7. 7.IPP, Department of Pathophysiology, Center of Physiology, Pathophysiology and ImmunologyMedical University ViennaViennaAustria

Personalised recommendations