Cancer Immunology, Immunotherapy

, Volume 58, Issue 4, pp 589–601 | Cite as

Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules

  • Sara J. Adair
  • Kevin T. HoganEmail author
Original Article



To test the hypothesis that decrease in DNA methylation will increase the expression of cancer-testis antigens (CTA) and class I major histocompatibility complex (MHC)-encoded molecules by ovarian cancer cells, and thus increase the ability of these cells to be recognized by antigen-reactive CD8+ T cells.


Human ovarian cancer cell lines were cultured in the presence or absence of varying concentrations of the DNA demethylating agent 5-aza-2′-deoxycytidine (DAC) for 3–7 days. The expression levels of 12 CTA genes were measured using the polymerase chain reaction. The protein expression levels of class I MHC molecules and MAGE-A1 were measured by flow cytometry. T cell reactivity was determined using interferon-γ ELISpot analysis.


DAC treatment of ovarian cancer cell lines increased the expression of 11 of 12 CTA genes tested including MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, NY-ESO-1, TAG-1, TAG-2a, TAG-2b, and TAG-2c. In contrast, DAC treatment decreased the already low expression of the MAGE-A2 gene by ovarian cancer cells, a finding not previously observed in cancers of any histological type. DAC treatment increases the expression of class I MHC molecules by the cells. These effects were time-dependent over a 7-day interval, and were dose-dependent up to 1–3 μM for CTA and up to 10 μM for class I MHC molecules. Each cell line tested had a unique pattern of gene upregulation after exposure to DAC. The enhanced expression levels increased the recognition of 2 of 3 antigens recognized by antigen-reactive CD8+ T cells.


These results demonstrate the potential utility of combining DAC therapy with vaccine therapy in an attempt to induce the expression of antigens targeted by the vaccine, but they also demonstrate that care must be taken to target inducible antigens.


Ovarian cancer Class I MHC molecules Cancer-testis antigens DNA methylation 5-Aza-2′-deoxycytidine 



Cancer-testis antigen


Cytotoxic T lymphocyte




DNA methyltransferase


Glyceraldehyde-3-phosphate dehydrogenase


Monoclonal antibody


Major histocompatibility complex


Polymerase chain reaction



This work was supported by grant W81XWH-05-1-0012 from the United States Department of Defense to K. T. Hogan. The authors wish to thank Dr. Craig L. Slingluff Jr. for reviewing the manuscript and the members of the UVA Human Immune Therapy Center core laboratory for performing the ELISpot analyses.

Supplementary material

262_2008_582_MOESM1_ESM.doc (584 kb)
Supplementary Figures (DOC 584 kb)


  1. 1.
    Berger AE, Davis JE, Cresswell P (1982) Monoclonal antibody to HLA-A3. Hybridoma 1:87–90PubMedGoogle Scholar
  2. 2.
    Brasseur F, Marchand M, Vanwijck R, Herin M, Lethe B, Chomez P, Boon T (1992) Human gene MAGE-1, which codes for a tumor-rejection antigen, is expressed by some breast tumors. Int J Cancer 52:839–841PubMedCrossRefGoogle Scholar
  3. 3.
    Buick RN, Pullano R, Trent JM (1985) Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res 45:3668–3676PubMedGoogle Scholar
  4. 4.
    Carr TM, Adair SJ, Fink MJ, Hogan KT (2008) Immunological profiling of a panel of ovarian cancer cell lines. Cancer Immunol Immunother 57:31–42PubMedCrossRefGoogle Scholar
  5. 5.
    Chen YT, Old LJ (1999) Cancer-testis antigens: targets for cancer immunotherapy. Cancer J Sci Am 5:16–17PubMedCrossRefGoogle Scholar
  6. 6.
    Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, Petroni GR, Bissonette EA, Neese PY, Grosh WW, Merrill P, Fink R, Woodson EM, Wiernasz CJ, Patterson JW, Slingluff CL Jr (2005) MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and Montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol 174:3080–3086PubMedGoogle Scholar
  7. 7.
    Cho B, Lee H, Jeong S, Bang YJ, Lee HJ, Hwang KS, Kim HY, Lee YS, Kang GH, Jeoung DI (2003) Promoter hypomethylation of a novel cancer/testis antigen gene cage is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma. Biochem Biophys Res Commun 307:52–63PubMedCrossRefGoogle Scholar
  8. 8.
    Coral S, Sigalotti L, Altomonte M, Engelsberg A, Colizzi F, Cattarossi I, Maraskovsky E, Jager E, Seliger B, Maio M (2002) 5-aza-2′-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: Immunotherapeutic implications. Clin Cancer Res 8:2690–2695PubMedGoogle Scholar
  9. 9.
    Coral S, Sigalotti L, Colizzi F, Spessotto A, Nardi G, Cortini E, Pezzani L, Fratta E, Fonsatti E, Di Giacomo AM, Nicotra MR, Natali PG, Altomonte M, Maio M (2006) Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: Immunotherapeutic implications. J Cell Physiol 207:58–66PubMedCrossRefGoogle Scholar
  10. 10.
    Coral S, Sigalotti L, Gasparollo A, Cattarossi I, Visintin A, Cattelan A, Altomonte M, Maio M (1999) Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2′-deoxycytidine (5-aza-cdr). J Immunother 22:16–24PubMedCrossRefGoogle Scholar
  11. 11.
    De Plaen E, Arden K, Traversari C, Gaforio JJ, Szikora JP, De Smet C, Brasseur F, van der Bruggen P, Lethe B, Lurquin C, Chomez P, De Backer O, Boon T, Arden K, Cavenee W, Brasseur R (1994) Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40:360–369PubMedCrossRefGoogle Scholar
  12. 12.
    De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T (1996) The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A 93:7149–7153PubMedCrossRefGoogle Scholar
  13. 13.
    De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335PubMedGoogle Scholar
  14. 14.
    De Smet C, Lurquin C, Van der Bruggen P, De Plaen E, Brasseur F, Boon T (1994) Sequence and expression pattern of the human MAGE2 gene. Immunogenetics 39:121–129PubMedCrossRefGoogle Scholar
  15. 15.
    dos Santos NR, Torensma R, De Vries TJ, Schreurs MWJ, de Bruijn DRH, Kater-Baats E, Ruiter DJ, Adema GJ, van Muijen GNP, van Kessel AG (2000) Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Res 60:1654–1662PubMedGoogle Scholar
  16. 16.
    Ellis SA, Taylor C, McMichael A (1982) Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol 5:49–59PubMedCrossRefGoogle Scholar
  17. 17.
    Fogh J, Tremple G (1975) New human tumor cell lines. In: Fogh J (ed) Human tumor cell lines in vitro. Plenum Press, New York, pp 115–141Google Scholar
  18. 18.
    Fogh J, Wright WC, Loveless JD (1977) Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst 58:209–214PubMedGoogle Scholar
  19. 19.
    Fonsatti E, Nicolay HJM, Sigalotti L, Calabro L, Pezzani L, Colizzi F, Altomonte M, Guidoboni M, Marincola FM, Maio M (2007) Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: Immunotherapeutic implications. Clin Cancer Res 13:3333–3338PubMedCrossRefGoogle Scholar
  20. 20.
    Fonsatti E, Sigalotti L, Coral S, Colizzi F, Altomonte M, Maio M (2003) Methylation-regulated expression of HLA class I antigens in melanoma. Int J Cancer 105:430–431PubMedCrossRefGoogle Scholar
  21. 21.
    Fujie T, Mori M, Ueo H, Sugimachi K, Akiyoshi T (1997) Expression of MAGE and BAGE genes in Japanese breast cancers. Ann Oncol 8:369–372PubMedCrossRefGoogle Scholar
  22. 22.
    Guo ZS, Hong JA, Irvine KR, Chen GA, Spiess PJ, Liu Y, Zeng G, Wunderlich JR, Nguyen DM, Restifo NP, Schrump DS (2006) De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res 66:1105–1113PubMedCrossRefGoogle Scholar
  23. 23.
    Hamilton TC, Young RC, McKoy WM, Grotzinger KR, Green JA, Chu EW, Whang-Peng J, Rogan AM, Green WR, Ozols RF (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res 43:5379–5389PubMedGoogle Scholar
  24. 24.
    Hogan KT, Coppola MA, Gatlin CL, Thompson LW, Shabanowitz J, Hunt DF, Engelhard VH, Ross MM, Slingluff CL (2004) Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T lymphocyte reactivity to melanoma. Cancer Res 64:1157–1163PubMedCrossRefGoogle Scholar
  25. 25.
    Jager D, Jager E, Knuth A (2001) Immune responses to tumour antigens: Implications for antigen specific immunotherapy of cancer. J Clin Pathol 54:669–674PubMedGoogle Scholar
  26. 26.
    Jungbluth AA, Chen YT, Stockert E, Busam KJ, Kolb D, Iversen K, Coplan K, Williamson B, Altorki N, Old LJ (2001) Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues.[erratum appears in Int J Cancer 2002 February 20;97(6):878]. Int J Cancer 92:856–60Google Scholar
  27. 27.
    Jungbluth AA, Stockert E, Chen YT, Kolb D, Iversen K, Coplan K, Williamson B, Altorki N, Busam KJ, Old LJ (2000) Monoclonal antibody MA454 reveals a heterogeneous expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded lung tumours. Br J Cancer 83:493–497PubMedCrossRefGoogle Scholar
  28. 28.
    Juretic A, Spagnoli GC, Schultz-Thater E, Sarcevic B (2003) Cancer/testis tumour-associated antigens: immunohistochemical detection with monoclonal antibodies. Lancet Oncol 4:104–109PubMedCrossRefGoogle Scholar
  29. 29.
    Karlan BY, Amin W, Band V, Zurawski VR, Littlefield BA (1988) Plasminogen activator secretion by established lines of human ovarian carcinoma cells in vitro. Gynecol Oncol 31:103–112PubMedCrossRefGoogle Scholar
  30. 30.
    Karpf AR, Lasek AW, Ririe TO, Hanks AN, Grossman D, Jones DA (2004) Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine. Mol Pharmacol 65:18–27PubMedCrossRefGoogle Scholar
  31. 31.
    Kirkin AF, Dzhandzhugazyan KN, Zeuthen J (2002) Cancer/testis antigens: structural and immunobiological properties. Cancer Invest 20:222–236PubMedCrossRefGoogle Scholar
  32. 32.
    Kuppen PJK, Schuitemaker H, van’t Veer LJ, de Bruijn EA, van Oosterom AT, Schrier PI (1988) Cis-diamminedichloroplatinum(II)-resistant sublines derived from two human ovarian tumor cell lines. Cancer Res 48:3355–3359PubMedGoogle Scholar
  33. 33.
    Lau DHM, Lewis AD, Ehsan MN, Sikic BI (1991) Multifactorial mechanisms associated with broad cross-resistance of ovarian carcinoma cells selected by cyanomorpholino doxorubicin. Cancer Res 51:5181–5187PubMedGoogle Scholar
  34. 34.
    Li J, Yang Y, Fujie F, Baba K, Ueo H, Mori M, Akiyoshi T (1996) Expression of BAGE, GAGE, and MAGE genes in human gastric carcinoma. Clin Cancer Res 2:1619–1625PubMedGoogle Scholar
  35. 35.
    Lurquin C, De Smet C, Brasseur F, Muscatelli F, Martelange V, De Plaen E, Brasseur R, Monaco AP, Boon T (1997) Two members of the human mageb gene family located in xp21.3 are expressed in tumors of various histological origins. Genomics 46:397–408PubMedCrossRefGoogle Scholar
  36. 36.
    Maier JA, Voulalas P, Roeder D, Maciag T (1990) Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 249:1570–1574PubMedCrossRefGoogle Scholar
  37. 37.
    Menendez L, Walker D, Matyunina LV, Dickerson EB, Bowen NJ, Polavarapu N, Benigno BB, McDonald JF (2007) Identification of candidate methylation-responsive genes in ovarian cancer. Mol Cancer 6:10PubMedCrossRefGoogle Scholar
  38. 38.
    Menendez L, Walker LD, Matyunina LV, Totten KA, Benigno BB, McDonald JF (2008) Epigenetic changes within the promoter region of the HLA-G gene in ovarian tumors. Mol Cancer 7:43PubMedCrossRefGoogle Scholar
  39. 39.
    Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, Wang LD, Yang CS (2001) DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22:1615–1623PubMedCrossRefGoogle Scholar
  40. 40.
    Parham P, Barnstable CJ, Bodmer WF (1979) Use of a monoclonal antibody (W6/32) in structural studies of HLA-A, b, c antigens. J Immunol 123:342–349PubMedGoogle Scholar
  41. 41.
    Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A (2002) Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94:805–818PubMedGoogle Scholar
  42. 42.
    Platsoucas CD, Fincke JE, Pappas J, Jung WJ, Heckel M, Schwarting R, Magira E, Monos D, Freedman RS (2003) Immune responses to human tumors: development of tumor vaccines. Anticancer Res 23:1969–1996PubMedGoogle Scholar
  43. 43.
    Provencher DM, Lounis H, Champoux L, Tetrault M, Manderson EN, Wang JC, Eydoux P, Savoie R, Tonin PN, Mes-Masson AM (2000) Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell Dev Biol Anim 36:357–361PubMedCrossRefGoogle Scholar
  44. 44.
    Ries LAG, Melbert D, Krapcho M, Marriotto A, Miller BA, Feuer EJ, Clegg L, Horner MJ, Howlader N, Eisner MP, Reichman M, Edwards BK (2007) Seer cancer statistics review, 1975–2004. Natl Cancer Inst, BethesdaGoogle Scholar
  45. 45.
    Russo C, Ng AK, Pellegrino MA, Ferrone S (1983) The monoclonal antibody CR11-351 discriminates HLA-A2 variants identified by T cells. Immunogenetics 18:23–35PubMedCrossRefGoogle Scholar
  46. 46.
    Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1PubMedGoogle Scholar
  47. 47.
    Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Pishchik V, Figg WD, Murgo AJ, Steinberg SM (2006) Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 12:5777–5785PubMedCrossRefGoogle Scholar
  48. 48.
    Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13PubMedCrossRefGoogle Scholar
  49. 49.
    Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Expression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94:243–251PubMedCrossRefGoogle Scholar
  50. 50.
    Sigalotti L, Altomonte M, Colizzi F, Degan M, Rupolo M, Zagonel V, Pinto A, Gattei V, Maio M, Lubbert M, Wijermans PW, Jones PA, Hellstrom-Lindberg E (2003) 5-aza-2′-deoxycytidine (decitabine) treatment of hematopoietic malignancies: A multimechanism therapeutic approach? Blood 101:4644–4646PubMedCrossRefGoogle Scholar
  51. 51.
    Sigalotti L, Coral S, Altomonte M, Natali L, Gaudino G, Cacciotti P, Libener R, Colizzi F, Vianale G, Martini F, Tognon M, Jungbluth A, Cebon J, Maraskovsky E, Mutti L, Maio M (2002) Cancer testis antigens expression in mesothelioma: role of DNA methylation and bioimmunotherapeutic implications. Br J Cancer 86:979–982PubMedCrossRefGoogle Scholar
  52. 52.
    Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F, Fonsatti E, Traversari C, Altomonte M, Maio M (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64:9167–9171PubMedCrossRefGoogle Scholar
  53. 53.
    Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, Johansen N, Grosh WW, Yamshchikov GV, Neese PY, Patterson JW, Fink R, Rehm PK (2007) Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res 13:6386–6395PubMedCrossRefGoogle Scholar
  54. 54.
    Suyama T, Ohashi H, Nagai H, Hatano S, Asano H, Murate T, Saito H, Kinoshita T (2002) The MAGE-A2 gene expression is not determined solely by methylation status of the promoter region in hematological malignancies. Leuk Res 26:1113–1118PubMedCrossRefGoogle Scholar
  55. 55.
    Wang RF, Johnston SL, Zeng G, Topalian SL, Schwartzentruber DJ, Rosenberg SA (1998) A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol 161:3598–3606PubMedGoogle Scholar
  56. 56.
    Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, Treisman J, Rosenberg SA (1994) Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 54:1766–1771PubMedGoogle Scholar
  57. 57.
    Weiser TS, Guo ZS, Ohnmacht GA, Parkhurst ML, Tong-On P, Marincola FM, Fischette MR, Yu X, Chen GA, Hong JA, Stewart JH, Nguyen DM, Rosenberg SA, Schrump DS (2001) Sequential 5-aza-2′ deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. J Immunother 24:151–161CrossRefGoogle Scholar
  58. 58.
    Weiser TS, Ohnmacht GA, Guo ZS, Fischette MR, Chen GA, Hong JA, Nguyen DM, Schrump DS (2001) Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann Thorac Surg 71:295–302PubMedCrossRefGoogle Scholar
  59. 59.
    Wischnewski F, Pantel K, Schwarzenbach H (2006) Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res 4:339–349PubMedCrossRefGoogle Scholar
  60. 60.
    Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Teates D, Neese P, Grosh WW, Petroni G, Engelhard VH, Slingluff CL Jr (2001) Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer 92:703–711PubMedCrossRefGoogle Scholar
  61. 61.
    Zendman AJ, Ruiter DJ, Van Muijen GN (2003) Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 194:272–288PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Surgery and the Human Immune Therapy CenterUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations