Advertisement

Cancer Immunology, Immunotherapy

, Volume 58, Issue 3, pp 351–360 | Cite as

Generation of a human IgM monoclonal antibody directed against HLA class II molecules: a potential agent in the treatment of haematological malignancies

  • Belén Díaz
  • Irene Sanjuan
  • Francisco Gambón
  • Carmen Loureiro
  • Susana Magadán
  • África González–Fernández
Original Article

Abstract

Major histocompatibility complex (MHC) class II molecules have been considered as a good target molecule for use in immunotherapy, because of the high expression in some lymphoma and leukaemia cells and, also, because of their restricted expression on human cells (monocytes, dendritic, B lymphocytes, thymic epithelial cells, and some cytokine-activated cells, such as T lymphocytes). We have obtained a human IgM monoclonal antibody directed against human leukocyte antigen (HLA) class II molecules, using transgenic mice carrying human Ig genes. The antibody BH1 (IgM/κ isotype) recognises HLA-class II on the surface of tumour cells from patients suffering from haematological malignancies, such as chronic and acute lymphocytic leukaemias, non-Hodgkin lymphomas and myeloid leukaemias. Interestingly, functional studies revealed that BH1 mAb recognises and kills very efficiently tumour cells from several leukaemia patients in the presence of human serum as a source of complement. These results suggest that this human IgM monoclonal antibody against HLA-class II could be considered as a potential agent in the treatment of several malignancies.

Keywords

HLA class II Human monoclonal antibodies Immunotherapy Leukaemia 

Notes

Acknowledgments

We would like to thank Dr Marianne Brüggemann for supplying the transgenic mice used in this work; Angel Torreiro for assistance with maintenance of the mice; Charo de Pablo (Clínica Puerta de Hierro, Madrid) and Professor Alan Epstein (University of Southern California, USA) for providing antibodies Q2/70 and CHLym-1, respectively; and Darío Alves, Cristian Sánchez, Daniel Pérez, Elina Garet, Silvia Lorenzo and Marisa Abad for technical help. The contributions of B. D. and I. S. include the generation and characterisation of monoclonal antibodies, analysis of peripheral blood cells and complement lysis. S. M. performed most of the flow cytometry studies in different populations and supervised the complement lysis and analysis in leukaemia patients. F. G. and A. G. supervised the work undertaken by B. D., I. S. and S. M. in the Hospital and in the University, respectively. This study was supported by the Xunta de Galicia, the Instituto de Salud Carlos III (Red del FIS G03/136) and the Ministerio de Educación y Ciencia (Nanobiomed, Consolider-Ingenio2010).

Conflict of interest statement

The authors declare no competing financial interests.

References

  1. 1.
    Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157PubMedCrossRefGoogle Scholar
  2. 2.
    Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA, Neuberger MS (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci 86(17):6709–6713PubMedCrossRefGoogle Scholar
  3. 3.
    Brüggemann M, Teale C, Clark M, Bindon C, Waldmann H (1989) A matched set of rat/mouse chimeric antibodies identification and biological properties of rat H chain constant regions mu, gamma 1, gamma 2a, gamma 2b, gamma 2c, epsilon, and alpha. J Immunol 142:3145–3150PubMedGoogle Scholar
  4. 4.
    Burgess T, Coxon A, Meyer S, Sun J, Rex K, Tsuruda T, Chen Q, Ho SY, Li L, Kaufman S, McDorman K, Cattley RC, Sun J, Elliott G, Zhang K, Feng X, Jia XC, Green L, Radinsky R, Kendall R (2006) Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 66:1721–1729PubMedCrossRefGoogle Scholar
  5. 5.
    Carlo-Stella C, Di Nicola M, Turco MC, Cleris L, Lavazza C, Longoni P, Milanesi M, Magni M, Ammirante M, Leone A, Nagy Z, Gioffre WR, Formelli F, Gianni AM (2006) The anti-human leukocyte antigen-DR monoclonal antibody 1D09C3 activates the mitochondrial cell death pathway and exerts a potent antitumor activity in lymphoma-bearing nonobese diabetic/severe combined immunodeficient mice. Cancer Res 66:1799–1808PubMedCrossRefGoogle Scholar
  6. 6.
    Carlo-Stella C, Guidetti A, Di Nicola M, Longoni P, Cleris L, Lavazza C, Milanesi M, Milani R, Carrabba M, Farina L, Formelli F, Gianni AM, Corradini P (2006) CD52 antigen expressed by malignant plasma cells can be targeted by alemtuzumab in vivo in NOD/SCID mice. Exp Hematol 34:721–727PubMedCrossRefGoogle Scholar
  7. 7.
    Carlo-Stella C, Guidetti A, Di Nicola M, Lavazza C, Cleris L, Sia D, Longoni P, Milanesi M, Magni M, Nagy Z, Corradini P, Carbone A, Formelli F, Gianni AM (2007) IFN-gamma enhances the antimyeloma activity of the fully human anti-human leukocyte antigen-DR monoclonal antibody 1D09C3. Cancer Res.1 67(7):3269–3275CrossRefGoogle Scholar
  8. 8.
    Davis CG, Jia XC, Feng X, Haak-Frendscho M (2004) Production of human antibodies from transgenic mice. Methods Mol Biol 248:191–200PubMedGoogle Scholar
  9. 9.
    Dechant M, Bruenke J, Valerius T (2003) HLA class II antibodies in the treatment of hematologic malignancies. Semin Oncol 30:465–475PubMedCrossRefGoogle Scholar
  10. 10.
    Dechant M, Vidarsson G, Stockmeyer B, Repp R, Glennie MJ, Gramatzki M, van de Winkel JG, Valerius T (2002) Chimeric IgA antibodies against HLA class II effectively trigger lymphoma cell killing. Blood 100:4574–4580PubMedCrossRefGoogle Scholar
  11. 11.
    Denardo GL, Tobin E, Chan K, Bradt BM, Denardo SJ (2005) Direct antilymphoma effects on human lymphoma cells of monotherapy and combination therapy with CD20 and HLA-DR antibodies and 90Y-labeled HLA-DR antibodies. Clin Cancer Res 11:7075s–7079sPubMedCrossRefGoogle Scholar
  12. 12.
    Epstein MA, Achong BG, Barr YM, Zajac B, Henle G, Henle W (1966) Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J Natl Cancer Inst 37(4):547–559PubMedGoogle Scholar
  13. 13.
    Gilliland LK, Walsh LA, Frewin MR, Wise MP, Tone M, Hale G, Kioussis D, Waldmann H (1999) Elimination of the immunogenicity of therapeutic antibodies. J Immunol 162:3663–3671PubMedGoogle Scholar
  14. 14.
    Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S, Tedesco F, Rambaldi A, Introna M (2000) Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95:3900–3908PubMedGoogle Scholar
  15. 15.
    Haan KM, Kwok WW, Longnecker R, Speck P (2000) Epstein-Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J Virol 74(5):2451–2454PubMedCrossRefGoogle Scholar
  16. 16.
    Hale G, Cobbold S, Novitzky N, Bunjes D, Willemze R, Prentice HG, Milligan D, MacKinnon S, Waldmann H (2001) CAMPATH-1 antibodies in stem-cell transplantation. Cytotherapy 3:145–164PubMedCrossRefGoogle Scholar
  17. 17.
    Hu P, Glasky MS, Yun A, Alauddin MM, Hornick JL, Khawli LA, Epstein AL (1995) A human–mouse chimeric Lym-1 monoclonal antibody with specificity for human lymphomas expressed in a baculovirus system. Hum Antibodies Hybridomas 6(2):57–67PubMedGoogle Scholar
  18. 18.
    Isaacs JD, Wing MG, Greenwood JD, Hazleman BL, Hale G, Waldmann H (1996) A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin Exp Immunol 106:427–433PubMedCrossRefGoogle Scholar
  19. 19.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  20. 20.
    Liu C, DeNardo G, Tobin E, DeNardo S (2004) Antilymphoma effects of anti-HLA-DR and CD20 monoclonal antibodies (Lym-1 and Rituximab) on human lymphoma cells. Cancer Biother Radiopharm 19:545–561PubMedGoogle Scholar
  21. 21.
    Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125PubMedCrossRefGoogle Scholar
  22. 22.
    Magadán S, Valladares M, Suárez E, Sanjuán I, Molina A, Ayling C, Davies SL, Zou X, Williams GT, Neuberger MS, Brüggemann M, Gambón F, Díaz-Espada F, González-Fernández A (2002) Production of antigen-specific human monoclonal antibodies: comparison of mice carrying IgH/kappa or IgH/kappa/lambda transloci. Biotechniques 33:680 See also 682,684PubMedGoogle Scholar
  23. 23.
    Mavromatis B, Cheson BD (2003) Monoclonal antibody therapy of chronic lymphocytic leukemia. J Clin Oncol 21:1874–1881PubMedCrossRefGoogle Scholar
  24. 24.
    Molina A, Valladares M, Magadán S, Sancho D, Viedma F, Sanjuán I, Gambón F, Sánchez-Madrid F, González-Fernández A (2003) The use of transgenic mice for the production of a human monoclonal antibody specific for human CD69 antigen. J Immunol Methods 282:147–158PubMedCrossRefGoogle Scholar
  25. 25.
    Mone AP, Huang P, Pelicano H, Cheney CM, Green JM, Tso JY, Johnson AJ, Jefferson S, Lin TS, Byrd JC (2004) Hu1D10 induces apoptosis concurrent with activation of the AKT survival pathway in human chronic lymphocytic leukemia cells. Blood 103:1846–1854PubMedCrossRefGoogle Scholar
  26. 26.
    Nagy ZA, Hubner B, Lohning C, Rauchenberger R, Reiffert S, Thomassen-Wolf E, Zahn S, Leyer S, Schier EM, Zahradnik A, Brunner C, Lobenwein K, Rattel B, Stanglmaier M, Hallek M, Wing M, Anderson S, Dunn M, Kretzschmar T, Tesar M (2002) Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat Med 8:801–807PubMedGoogle Scholar
  27. 27.
    Flomenberg N, Knowles RW, Williams D, Horibe K, Rosenkrantz K, Dupont B (1985) T lymphocyte clones detecting novel supertypic HLA class II allospecificities, vol 22. Springer, Berlin, pp 270–300Google Scholar
  28. 28.
    Nicholson IC, Zou X, Popov AV, Cook GP, Corps EM, Humphries S, Ayling C, Goyenechea B, Xian J, Taussig MJ, Neuberger MS, Brüggemann M (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163:6898–6906PubMedGoogle Scholar
  29. 29.
    Ostendorf T, van Roeyen CR, Peterson JD, Kunter U, Eitner F, Hamad AJ, Chan G, Jia XC, Macaluso J, Gazit-Bornstein G, Keyt BA, Lichenstein HS, LaRochelle WJ, Floege J (2003) A fully human monoclonal antibody (CR002) identifies PDGF-D as a novel mediator of mesangioproliferative glomerulonephritis. J Am Soc Nephrol 14:2237–2247PubMedCrossRefGoogle Scholar
  30. 30.
    Oxelius VA, Aurivillius M, Carlsson AM, Musil K (1999) Serum Gm allotype development during childhood. Scand J Immunol 50:440–446PubMedCrossRefGoogle Scholar
  31. 31.
    Rouleau M, Namikawa R, Antonenko S, Carballido-Perrig N, Roncarolo MG (1996) Antigen-specific cytotoxic T cells mediate human fetal pancreas allograft rejection in SCID-hu mice. J Immunol 157(12):5710–5720PubMedGoogle Scholar
  32. 32.
    Quaranta V, Indiveri F, Glassy MC, Ng A, Russo C, Molinaro GA, Pellegrino MA, Ferrone S (1980) Serological, functional, and immunochemical characterization of a monoclonal antibody (MoAb Q2/70) to human Ia-like antigens. Hum Immunol 1:211–223PubMedCrossRefGoogle Scholar
  33. 33.
    Shi JD, Bullock C, Hall WC, Wescott V, Wang H, Levitt DJ, Klingbeil CK (2002) In vivo pharmacodynamic effects of Hu1D10 (remitogen), a humanized antibody reactive against a polymorphic determinant of HLA-DR expressed on B cells. Leuk Lymphoma 43:1303–1312PubMedCrossRefGoogle Scholar
  34. 34.
    Suárez E, Magadán S, Sanjuán I, Valladares M, Molina A, Gambón F, Díaz-Espada F, González-Fernández A (2006) Rearrangement of only one human IGHV gene is sufficient to generate a wide repertoire of antigen specific antibody responses in transgenic mice. Mol Immunol 43:1827–1835PubMedCrossRefGoogle Scholar
  35. 35.
    Tawara T, Hasegawa K, Sugiura Y, Tahara T, Ishida I, Kataoka S (2007) Fully human antibody exhibits pan-human leukocyte antigen-DR recognition and high in vitro/vivo efficacy against human leukocyte antigen-DR-positive lymphomas. Cancer Sci 98:921–928PubMedCrossRefGoogle Scholar
  36. 36.
    Treon SP, Mitsiades C, Mitsiades N, Young G, Doss D, Schlossman R, Anderson KC (2001) Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J Immunother 24:263–271CrossRefGoogle Scholar
  37. 37.
    Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG (2001) Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 38:17–23PubMedCrossRefGoogle Scholar
  38. 38.
    Ziller F, Macor P, Bulla R, Sblattero D, Marzari R, Tedesco F (2005) Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement-regulatory proteins CD55 and CD59. Eur J Immunol 35:2175–2183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Belén Díaz
    • 1
  • Irene Sanjuan
    • 2
  • Francisco Gambón
    • 2
  • Carmen Loureiro
    • 3
  • Susana Magadán
    • 4
  • África González–Fernández
    • 1
  1. 1.Immunology UnitUniversidad de Vigo, Edificio de Ciencias ExperimentalesVigoSpain
  2. 2.Immunology UnitHospital Meixoeiro, Complejo Hospitalario Universitario de VigoVigoSpain
  3. 3.Hematology UnitHospital Meixoeiro, Complejo Hospitalario Universitario de VigoVigoSpain
  4. 4.Instituto Superior de Saude do Alto Ave (ISAVE)PVLPortugal

Personalised recommendations