Cancer Immunology, Immunotherapy

, Volume 58, Issue 3, pp 325–338 | Cite as

Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients

  • Ashley J. KnightsEmail author
  • Natko Nuber
  • Christopher W. Thomson
  • Olga de la Rosa
  • Elke Jäger
  • Jean-Marie Tiercy
  • Maries van den Broek
  • Steve Pascolo
  • Alexander Knuth
  • Alfred ZippeliusEmail author
Original Article


The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions.


T cells Tumour immunity Vaccination Antigens/peptides/epitopes 



We are grateful to Heidi Mattlin, Conny Schneider, Bruno Schmid and Claudia Matter for excellent technical assistance. Dr I. Davis & Dr W. Chen, Melbourne Ludwig Institute, for providing NY-ESO-1 peptides, and Dr D. Rimoldi and Dr V. Cesson, Lausanne Ludwig Institute, for the MHC class II blocking antibodies. This work was supported in part by the Cancer Research Institute/Ludwig Institute for Cancer Research & Cancer Vaccine Collaborative, The Atlantic Philanthropies, Swiss National Science Foundation and UBS Wealth Management. A.Z. was supported in part by the Emmy-Noether Program (Zi685-2/3) of the Deutsche Forschungsgemeinschaft.


  1. 1.
    van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647PubMedCrossRefGoogle Scholar
  2. 2.
    Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1PubMedGoogle Scholar
  3. 3.
    Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188:22–32PubMedCrossRefGoogle Scholar
  4. 4.
    Vansteenkiste J, Zielinski M, Linder A, Dahabre J, Esteban E, Malinowski W, Jassem J, Passlick B, Lehmann F, Brichard VG (2007) Final results of a multi-center, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer (NSCLC). J Clin Oncol 25(18S):7554Google Scholar
  5. 5.
    Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E, Knuth A, Chen YT, Old LJ (2006) NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 95:1–3077PubMedCrossRefGoogle Scholar
  6. 6.
    Nicholaou T, Ebert L, Davis ID, Robson N, Klein O, Maraskovsky E, Chen W, Cebon J (2006) Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol Cell Biol 84:303–317PubMedCrossRefGoogle Scholar
  7. 7.
    Jager E, Karbach J, Gnjatic S, Neumann A, Bender A, Valmori D, Ayyoub M, Ritter E, Ritter G, Jager D, Panicali D, Hoffman E, Pan L, Oettgen H, Old LJ, Knuth A (2006) Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci U S A 103:14453–14458PubMedCrossRefGoogle Scholar
  8. 8.
    Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, Scott AM, Maraskovsky E, McArthur G, MacGregor D, Sturrock S, Tai TY, Green S, Cuthbertson A, Maher D, Miloradovic L, Mitchell SV, Ritter G, Jungbluth AA, Chen YT, Gnjatic S, Hoffman EW, Old LJ, Cebon JS (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci U S A 101:10697–10702PubMedCrossRefGoogle Scholar
  9. 9.
    Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL (2006) Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 18:92–97PubMedCrossRefGoogle Scholar
  10. 10.
    Falo LD Jr, Colarusso LJ, Benacerraf B, Rock KL (1992) Serum proteases alter the antigenicity of peptides presented by class I major histocompatibility complex molecules. Proc Natl Acad Sci U S A 89:8347–8350PubMedCrossRefGoogle Scholar
  11. 11.
    Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369PubMedCrossRefGoogle Scholar
  12. 12.
    Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409–417PubMedGoogle Scholar
  13. 13.
    Grunebach F, Erndt S, Hantschel M, Heine A, Brossart P (2008) Generation of antigen-specific CTL responses using RGS1 mRNA transfected dendritic cells. Cancer Immunol Immunother Feb 27 [Epub ahead of print]. doi: 10.1007/s00262-008-0486-5
  14. 14.
    Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, Rammensee HF, Garbe C, Pascolo S (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 31:180–188PubMedCrossRefGoogle Scholar
  15. 15.
    Teufel R, Carralot JP, Scheel B, Probst J, Walter S, Jung G, Hoerr I, Rammensee HG, Pascolo S (2005) Human peripheral blood mononuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro. Cell Mol Life Sci 62:1755–1762PubMedCrossRefGoogle Scholar
  16. 16.
    Kreiter S, Konrad T, Sester M, Huber C, Tureci O, Sahin U (2007) Simultaneous ex vivo quantification of antigen-specific CD4+ and CD8+ T cell responses using in vitro transcribed RNA. Cancer Immunol Immunother 56:1577–1587PubMedCrossRefGoogle Scholar
  17. 17.
    Walton SM, Gerlinger M, de la Rosa O, Nuber N, Knights A, Gati A, Laumer M, Strauss L, Exner C, Schafer N, Urosevic M, Dummer R, Tiercy JM, Mackensen A, Jaeger E, Levy F, Knuth A, Jager D, Zippelius A (2006) Spontaneous CD8 T cell responses against the melanocyte differentiation antigen RAB38/NY-MEL-1 in melanoma patients. J Immunol 177:8212–8218PubMedGoogle Scholar
  18. 18.
    Pawelec G, Marsh SG (2006) ESTDAB: a collection of immunologically characterised melanoma cell lines and searchable databank. Cancer Immunol Immunother 55:623–627PubMedCrossRefGoogle Scholar
  19. 19.
    Mathieu MG, Knights AJ, Pawelec G, Riley CL, Wernet D, Lemonnier FA, Straten PT, Mueller L, Rees RC, McArdle SE (2007) HAGE, a cancer/testis antigen with potential for melanoma immunotherapy: identification of several MHC class I/II HAGE-derived immunogenic peptides. Cancer Immunol Immunother 56:1885–1895PubMedCrossRefGoogle Scholar
  20. 20.
    Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918PubMedCrossRefGoogle Scholar
  21. 21.
    Carralot JP, Probst J, Hoerr I, Scheel B, Teufel R, Jung G, Rammensee HG, Pascolo S (2004) Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 61:2418–2424PubMedCrossRefGoogle Scholar
  22. 22.
    Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, Rimoldi D, Guillaume P, Meidenbauer N, Mackensen A, Rufer N, Lubenow N, Speiser D, Cerottini JC, Romero P, Pittet MJ (2004) Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res 64:2865–2873PubMedCrossRefGoogle Scholar
  23. 23.
    Pittet MJ, Zippelius A, Speiser DE, Assenmacher M, Guillaume P, Valmori D, Lienard D, Lejeune F, Cerottini JC, Romero P (2001) Ex vivo IFN-gamma secretion by circulating CD8 T lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. J Immunol 166:7634–7640PubMedGoogle Scholar
  24. 24.
    Atanackovic D, Matsuo M, Ritter E, Mazzara G, Ritter G, Jager E, Knuth A, Old LJ, Gnjatic S (2003) Monitoring CD4+ T cell responses against viral and tumor antigens using T cells as novel target APC. J Immunol Methods 278:57–66PubMedCrossRefGoogle Scholar
  25. 25.
    Yewdell JW, Nicchitta CV (2006) The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol 27:368–373PubMedCrossRefGoogle Scholar
  26. 26.
    Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, Arand M, Wada H, Noguchi Y, Stockert E, Old LJ, Knuth A (1998) Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187:265–270PubMedCrossRefGoogle Scholar
  27. 27.
    Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki RG, Dupont B, Ritter G, Chen YT, Knuth A, Old LJ (2003) Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci U S A 100:8862–8867PubMedCrossRefGoogle Scholar
  28. 28.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712PubMedCrossRefGoogle Scholar
  29. 29.
    Karbach J, Pauligk C, Bender A, Gnjatic S, Franzmann K, Wahle C, Jager D, Knuth A, Old LJ, Jager E (2006) Identification of new NY-ESO-1 epitopes recognized by CD4+ T cells and presented by HLA-DQ B1 03011. Int J Cancer 118:668–674PubMedCrossRefGoogle Scholar
  30. 30.
    Baumgaertner P, Rufer N, Devevre E, Derre L, Rimoldi D, Geldhof C, Voelter V, Lienard D, Romero P, Speiser DE (2006) Ex vivo detectable human CD8 T-cell responses to cancer-testis antigens. Cancer Res 66:1912–1916PubMedCrossRefGoogle Scholar
  31. 31.
    Bioley G, Jandus C, Tuyaerts S, Rimoldi D, Kwok WW, Speiser DE, Tiercy JM, Thielemans K, Cerottini JC, Romero P (2006) Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J Immunol 177:6769–6779PubMedGoogle Scholar
  32. 32.
    Harrop R, Drury N, Shingler W, Chikoti P, Redchenko I, Carroll MW, Kingsman SM, Naylor S, Melcher A, Nicholls J, Wassan H, Habib N, Anthoney A (2007) Vaccination of colorectal cancer patients with modified vaccinia ankara encoding the tumor antigen 5T4 (TroVax) given alongside chemotherapy induces potent immune responses. Clin Cancer Res 13:4487–4494PubMedCrossRefGoogle Scholar
  33. 33.
    Coulie PG, Connerotte T (2005) Human tumor-specific T lymphocytes: does function matter more than number? Curr Opin Immunol 17:320–325PubMedCrossRefGoogle Scholar
  34. 34.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274PubMedCrossRefGoogle Scholar
  35. 35.
    Appay V, Jandus C, Voelter V, Reynard S, Coupland SE, Rimoldi D, Lienard D, Guillaume P, Krieg AM, Cerottini JC, Romero P, Leyvraz S, Rufer N, Speiser DE (2006) New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J Immunol 177:1670–1678PubMedGoogle Scholar
  36. 36.
    Michiels A, Tuyaerts S, Bonehill A, Corthals J, Breckpot K, Heirman C, Van Meirvenne S, Dullaers M, Allard S, Brasseur F, van der Bruggen P, Thielemans K (2005) Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Ther 12:772–782PubMedCrossRefGoogle Scholar
  37. 37.
    Naota H, Miyahara Y, Okumura S, Kuzushima K, Akatsuka Y, Hiasa A, Kitano S, Takahashi T, Yuta A, Majima Y, Shiku H (2006) Generation of peptide-specific CD8+ T cells by phytohemagglutinin-stimulated antigen-mRNA-transduced CD4+ T cells. J Immunol Methods 314:54–66PubMedCrossRefGoogle Scholar
  38. 38.
    Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, Huber C, Tureci O, Sahin U (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol 180:309–318PubMedGoogle Scholar
  39. 39.
    Bonehill A, Heirman C, Tuyaerts S, Michiels A, Zhang Y, van der Bruggen P, Thielemans K (2003) Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res 63:5587–5594PubMedGoogle Scholar
  40. 40.
    Fassnacht M, Lee J, Milazzo C, Boczkowski D, Su Z, Nair S, Gilboa E (2005) Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy. Clin Cancer Res 11:5566–5571PubMedCrossRefGoogle Scholar
  41. 41.
    Kavanagh DG, Kaufmann DE, Sunderji S, Frahm N, Le Gall S, Boczkowski D, Rosenberg ES, Stone DR, Johnston MN, Wagner BS, Zaman MT, Brander C, Gilboa E, Walker BD, Bhardwaj N (2006) Expansion of HIV-specific CD4+ and CD8+ T cells by dendritic cells transfected with mRNA encoding cytoplasm- or lysosome-targeted Nef. Blood 107:1963–1969PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ashley J. Knights
    • 1
    Email author
  • Natko Nuber
    • 1
  • Christopher W. Thomson
    • 1
  • Olga de la Rosa
    • 1
  • Elke Jäger
    • 2
  • Jean-Marie Tiercy
    • 3
  • Maries van den Broek
    • 1
  • Steve Pascolo
    • 1
  • Alexander Knuth
    • 1
  • Alfred Zippelius
    • 1
    • 4
    Email author
  1. 1.Medical Oncology, Department of Internal MedicineUniversity Hospital ZurichZurichSwitzerland
  2. 2.Krankenhaus NordwestFrankfurtGermany
  3. 3.University HospitalGenevaSwitzerland
  4. 4.University Hospital BaselBaselSwitzerland

Personalised recommendations