Cancer Immunology, Immunotherapy

, Volume 58, Issue 5, pp 769–775 | Cite as

Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth

  • Markus Loeffler
  • Gaelle Le’Negrate
  • Maryla Krajewska
  • John C. Reed
Short Communication


Intravenously-applied bacteria tend to accumulate in tumors and can sporadically lead to tumor regression. Systemic administration of attenuated Salmonella typhimurium is safe and has shown no significant adverse effects in humans. The purpose of this study was to test the hypothesis that engineering S. typhimurium to express a chemokine, CCL21, would increase anti-tumor activity. We engineered an attenuated strain of S. typhimurium to produce the chemokine CCL21. Attenuated S. typhimurium expressing CCL21 significantly inhibited the growth of primary tumors and pulmonary metastases in preclinical models of multi-drug-resistant murine carcinomas, while control bacteria did not. Histological analysis of tumors showed marked inflammatory cell infiltrates in mice treated with CCL21-expressing but not control bacteria. Levels of cytokines and chemokines known to be induced by CCL21 [e.g., interferon-γ (INFγ), CXCL9, and CXCL10] were significantly elevated in tumors of mice treated with CCL21-expressing but not control S. typhimurium. The anti-tumor activity was found to be dependent on CD4- and CD8-expressing cells, based on antibody-mediated in vivo immuno-depletion experiments. Anti-tumor activity was achieved without evidence of toxicity. In summary, chemokine-expressing, attenuated bacteria may provide a novel approach to cancer immunotherapy for effective and well-tolerated in vivo delivery of immunomodulatory proteins.


Salmonella CCL21 Cancer therapy Bacterial therapy Tumor targeting 



We thank M. Hanaii and T. Siegfried for manuscript preparation, M. Cuddy for manuscript review, Dr W. Z. Wei for D2F2 cells, and Dr G. Valbuena for CXCL9 and CXCL10 antibodies. We also acknowledge the generous support of the Austrian Academy of Sciences, APART Fellowship Program (M. Loeffler) and the NIH (CA-69381) (J. C. Reed).


  1. 1.
    Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res (262):3–11Google Scholar
  2. 2.
    Coley WB, Hoguet JP (1916) Melanotic cancer: with a report of 91 cases. Ann Surg 64(2):206–241PubMedCrossRefGoogle Scholar
  3. 3.
    Coley WB (1906) Late results of the treatment of inoperable sarcoma by the mixed toxins of Erysipelas and Bacillus prodigosus. Am J Med Sci 131:375–430Google Scholar
  4. 4.
    Herr HW (1997) Tumour progression and survival in patients with T1G3 bladder tumours: 15-year outcome. Br J Urol 80(5):762–765PubMedGoogle Scholar
  5. 5.
    Jackson AM, Ivshina AV, Senko O, Kuznetsova A, Sundan A, O’Donnell MA et al (1998) Prognosis of intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer by immunological urinary measurements: statistically weighted syndrome analysis. J Urol 159(3):1054–1063PubMedCrossRefGoogle Scholar
  6. 6.
    Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J et al (2000) Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 181(6):1996–2002PubMedCrossRefGoogle Scholar
  7. 7.
    Rosenberg SA, Spiess PJ, Kleiner DE (2002) Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother 25(3):218–225PubMedCrossRefGoogle Scholar
  8. 8.
    Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20(1):142–152PubMedCrossRefGoogle Scholar
  9. 9.
    Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I et al (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 22(3):313–320PubMedCrossRefGoogle Scholar
  10. 10.
    Thamm DH, Kurzman ID, King I, Li Z, Sznol M, Dubielzig RR et al (2005) Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res 11(13):4827–4834PubMedCrossRefGoogle Scholar
  11. 11.
    Carrier MJ, Chatfield SN, Dougan G, Nowicka UT, O’Callaghan D, Beesley JE et al (1992) Expression of human IL-1 beta in Salmonella typhimurium. A model system for the delivery of recombinant therapeutic proteins in vivo. J Immunol 148(4):1176–1181PubMedGoogle Scholar
  12. 12.
    Loeffler M, Le’Negrate G, Krajewska M, Reed JC (2007) Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci U S A 104(31):12879–12883PubMedCrossRefGoogle Scholar
  13. 13.
    Rollins BJ (1997) Chemokines. Blood 90(3):909–928PubMedGoogle Scholar
  14. 14.
    Kellermann SA, Hudak S, Oldham ER, Liu YJ, McEvoy LM (1999) The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J Immunol 162(7):3859–3864PubMedGoogle Scholar
  15. 15.
    Nagira M, Imai T, Yoshida R, Takagi S, Iwasaki M, Baba M et al (1998) A lymphocyte-specific CC chemokine, secondary lymphoid tissue chemokine (SLC), is a highly efficient chemoattractant for B cells and activated T cells. Eur J Immunol 28(5):1516–1523PubMedCrossRefGoogle Scholar
  16. 16.
    Kim CH, Pelus LM, Appelbaum E, Johanson K, Anzai N, Broxmeyer HE (1999) CCR7 ligands, SLC/6Ckine/Exodus2/TCA4 and CKbeta-11/MIP-3beta/ELC, are chemoattractants for CD56(+)CD16(-) NK cells and late stage lymphoid progenitors. Cell Immunol 193(2):226–235PubMedCrossRefGoogle Scholar
  17. 17.
    Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX et al (2000) Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 164(9):4558–4563PubMedGoogle Scholar
  18. 18.
    Yang SC, Batra RK, Hillinger S, Reckamp KL, Strieter RM, Dubinett SM et al (2006) Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 66(6):3205–3213PubMedCrossRefGoogle Scholar
  19. 19.
    Yang SC, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M et al (2004) Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 10(8):2891–2901PubMedCrossRefGoogle Scholar
  20. 20.
    Soto H, Wang W, Strieter M, Copeland NG, Gilbert DJ, Jenkins NA et al (1998) The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proc Natl Acad Sci U S A 95(14):8205–8210PubMedCrossRefGoogle Scholar
  21. 21.
    Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S et al (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182(1):155–162PubMedCrossRefGoogle Scholar
  22. 22.
    Sgadari C, Angiolillo AL, Tosato G (1996) Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87(9):3877–3882PubMedGoogle Scholar
  23. 23.
    Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995) The role of CXC chemokines as regulators of angiogenesis. Shock 4(3):155–160PubMedCrossRefGoogle Scholar
  24. 24.
    Wang JM, Deng X, Gong W, Su S (1998) Chemokines and their role in tumor growth and metastasis. J Immunol Methods 220(1–2):1–17PubMedCrossRefGoogle Scholar
  25. 25.
    Galen JE, Nair J, Wang JY, Wasserman SS, Tanner MK, Sztein MB et al (1999) Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect Immun 67(12):6424–6433PubMedGoogle Scholar
  26. 26.
    Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116(7):1955–1962PubMedCrossRefGoogle Scholar
  27. 27.
    Spitalny GL, Havell EA (1984) Monoclonal antibody to murine gamma interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J Exp Med 159(5):1560–1565PubMedCrossRefGoogle Scholar
  28. 28.
    Valbuena G, Walker DH (2004) Effect of blocking the CXCL9/10-CXCR3 chemokine system in the outcome of endothelial-target rickettsial infections. Am J Trop Med Hyg 71(4):393–399PubMedGoogle Scholar
  29. 29.
    Shi G, Partida-Sanchez S, Misra RS, Tighe M, Borchers MT, Lee JJ et al (2007) Identification of an alternative G{alpha}q-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J Exp Med 204(11):2705–2718PubMedCrossRefGoogle Scholar
  30. 30.
    Flanagan K, Moroziewicz D, Kwak H, Horig H, Kaufman HL (2004) The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell Immunol 231(1–2):75–84PubMedCrossRefGoogle Scholar
  31. 31.
    Reed JC, Doctor KS, Godzik A (2004) The domains of apoptosis: a genomics perspective. Sci STKE 2004(239):RE9Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Markus Loeffler
    • 1
  • Gaelle Le’Negrate
    • 1
  • Maryla Krajewska
    • 1
  • John C. Reed
    • 1
  1. 1.Burnham Institute for Medical ResearchLa JollaUSA

Personalised recommendations