Advertisement

Antitumor activity of a self-adjuvanting glyco-lipopeptide vaccine bearing B cell, CD4+ and CD8+ T cell epitopes

  • Ilham Bettahi
  • Gargi Dasgupta
  • Olivier Renaudet
  • Aziz Alami Chentoufi
  • Xiuli Zhang
  • Dale Carpenter
  • Susan Yoon
  • Pascal Dumy
  • Lbachir BenMohamedEmail author
Original Article

Abstract

Molecularly defined synthetic vaccines capable of inducing both antibodies and cellular anti-tumor immune responses, in a manner compatible with human delivery, are limited. Few molecules achieve this target without utilizing external immuno-adjuvants. In this study, we explored a self-adjuvanting glyco-lipopeptide (GLP) as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. A prototype B and T cell epitope-based GLP molecule was constructed by synthesizing a chimeric peptide made of a CD8+ T cell epitope, from ovalbumin (OVA257–264) and an universal CD4+ T helper (Th) epitope (PADRE). The resulting CTL–Th peptide backbones was coupled to a carbohydrate B cell epitope based on a regioselectively addressable functionalized templates (RAFT), made of four α-GalNAc molecules at C-terminal. The N terminus of the resulting glycopeptides (GP) was then linked to a palmitic acid moiety (PAM), obviating the need for potentially toxic external immuno-adjuvants. The final prototype OVA-GLP molecule, delivered in adjuvant-free PBS, in mice induced: (1) robust RAFT-specific IgG/IgM that recognized tumor cell lines; (2) local and systemic OVA257–264-specific IFN-γ producing CD8+ T cells; (3) PADRE-specific CD4+ T cells; (4) OVA-GLP vaccination elicited a reduction of tumor size in mice inoculated with syngeneic murine MO5 carcinoma cells and a protection from lethal carcinoma cell challenge; (5) finally, OVA-GLP immunization significantly inhibited the growth of pre-established MO5 tumors. Our results suggest self-adjuvanting glyco-lipopeptide molecules as a platform for B Cell, CD4+, and CD8+ T cell epitopes-based immunotherapeutic cancer vaccines.

Keywords

Vaccine Carbohydrate Glyco-lipopeptide CD4+ T cell CD8+ T cell 

Notes

Acknowledgments

This work was supported by NIH Grants EY14900, EY16663, The Discovery Eye Foundation Research to Prevent Blindness, Unrestricted Challenge Grant (LBM) and by the Centre National pour la Recherche Scientifique (CNRS), the Université Joseph Fourier (UJF), and the COST D-34 (DP).

References

  1. 1.
    Becerra JC, Arthur JF, Landucci GR, Forthal DN, Theuer CP (2003) CD8+ T cell mediated tumor protection by Pseudomonas exotoxin fused to ovalbumin in C57BL/6 mice. Surgery 133(4):404–410PubMedCrossRefGoogle Scholar
  2. 2.
    Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronchetti A, Moro M, Garancini MP, Casorati G, Dellabona P (2000) Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol 165(5):2651–2656PubMedGoogle Scholar
  3. 3.
    BenMohamed L, Gras-Masse H, Tartar A, Daubersies P, Brahimi K, Bossus M, Thomas A, Druilhe P (1997) Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees. Eur J Immunol 27(5):1242–1253PubMedCrossRefGoogle Scholar
  4. 4.
    BenMohamed L, Krishnan R, Auge C, Primus JF, Diamond DJ (2002) Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses. Immunology 106(1):113–121PubMedCrossRefGoogle Scholar
  5. 5.
    BenMohamed L, Krishnan R, Longmate J, Auge C, Low L, Primus J, Diamond DJ (2000) Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) response. Hum Immunol 61(8):764–779PubMedCrossRefGoogle Scholar
  6. 6.
    BenMohamed L, Thomas A, Bossus M, Brahimi K, Wubben J, Gras-Masse H, Druilhe P (2000) High immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules. Vaccine 18(25):2843–2855PubMedCrossRefGoogle Scholar
  7. 7.
    BenMohamed L, Thomas A, Druilhe P (2004) Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides. Infect Immun 72(8):4376–4384PubMedCrossRefGoogle Scholar
  8. 8.
    BenMohamed L, Wechsler SL, Nesburn AB (2002) Lipopeptide vaccines—yesterday, today, and tomorrow. Lancet Infect Dis 2(7):425–431PubMedCrossRefGoogle Scholar
  9. 9.
    Berko D, Carmi Y, Cafri G, Ben-Zaken S, Sheikhet HM, Tzehoval E, Eisenbach L, Margalit A, Gross G (2005) Membrane-anchored beta 2-microglobulin stabilizes a highly receptive state of MHC class I molecules. J Immunol 174(4):2116–2123PubMedGoogle Scholar
  10. 10.
    Bettahi I, Nesburn AB, Yoon S, Zhang X, Mohebbi A, Sue V, Vanderberg A, Wechsler SL, BenMohamed L (2007) Protective immunity against ocular herpes infection and disease induced by highly immunogenic self-adjuvanting glycoprotein d lipopeptide vaccines. Invest Ophthalmol Vis Sci 48(10):4643–4653PubMedCrossRefGoogle Scholar
  11. 11.
    Bettahi I, Zhang X, Afifi RE, BenMohamed L (2006) Protective immunity to genital herpes simplex virus type 1 and type 2 provided by self-adjuvanting lipopeptides that drive dendritic cell maturation and elicit a polarized Th1 immune response. Viral Immunol 19(2):220–236PubMedCrossRefGoogle Scholar
  12. 12.
    Boturyn D, Coll JL, Garanger E, Favrot MC, Dumy P (2004) Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 126(18):5730–5739PubMedCrossRefGoogle Scholar
  13. 13.
    Bourgeois C, Tanchot C (2003) Mini-review CD4 T cells are required for CD8 T cell memory generation. Eur J Immunol 33(12):3225–3231PubMedCrossRefGoogle Scholar
  14. 14.
    Braun V, Fischer E, Hantke K, Heller K, Rotering H (1985) Functional aspects of gram-negative cell surfaces. Subcell Biochem 11:103–180PubMedGoogle Scholar
  15. 15.
    Buskas T, Ingale S, Boons GJ (2005) Towards a fully synthetic carbohydrate-based anticancer vaccine: synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated Tn antigen. Angew Chem Int Ed Engl 44(37):5985–5988PubMedCrossRefGoogle Scholar
  16. 16.
    Casillas S, Pelley RJ, Milsom JW (1997) Adjuvant therapy for colorectal cancer: present and future perspectives. Dis Colon Rectum 40(8):977–992PubMedCrossRefGoogle Scholar
  17. 17.
    Doan T, Herd K, Ramshaw I, Thomson S, Tindle RW (2005) A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour. Cancer Immunol Immunother 54(2):157–171PubMedCrossRefGoogle Scholar
  18. 18.
    Fayolle C, Ladant D, Karimova G, Ullmann A, Leclerc C (1999) Therapy of murine tumors with recombinant Bordetella pertussis adenylate cyclase carrying a cytotoxic T cell epitope. J Immunol 162(7):4157–4162PubMedGoogle Scholar
  19. 19.
    Fitzmaurice CJ, Brown LE, McInerney TL, Jackson DC (1996) The assembly and immunological properties of non-linear synthetic immunogens containing T-cell and B-cell determinants. Vaccine 14(6):553–560PubMedCrossRefGoogle Scholar
  20. 20.
    Franco A (2005) CTL-based cancer preventive/therapeutic vaccines for carcinomas: role of tumour-associated carbohydrate antigens. Scand J Immunol 61(5):391–397PubMedCrossRefGoogle Scholar
  21. 21.
    Franco A (2008) Glycoconjugates as vaccines for cancer immunotherapy: clinical trials and future directions. Anticancer Agents Med Chem 8(1):86–91PubMedCrossRefGoogle Scholar
  22. 22.
    Grigalevicius S, Chierici S, Renaudet O, Lo-Man R, Deriaud E, Leclerc C, Dumy P (2005) Chemoselective assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines. Bioconjug Chem 16(5):1149–1159PubMedCrossRefGoogle Scholar
  23. 23.
    Guermonprez P, Fayolle C, Karimova G, Ullmann A, Leclerc C, Ladant D (2000) Bordetella pertussis adenylate cyclase toxin: a vehicle to deliver CD8-positive T-cell epitopes into antigen-presenting cells. Methods Enzymol 326:527–542PubMedCrossRefGoogle Scholar
  24. 24.
    Hakomori S (2001) Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 491:369–402PubMedGoogle Scholar
  25. 25.
    Hollenbaugh JA, Dutton RW (2006) IFN-gamma regulates donor CD8 T cell expansion, migration, and leads to apoptosis of cells of a solid tumor. J Immunol 177(5):3004–3011PubMedGoogle Scholar
  26. 26.
    Jackson DC, Lau YF, Le T, Suhrbier A, Deliyannis G, Cheers C, Smith C, Zeng W, Brown LE (2004) A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci USA 101(43):15440–15445PubMedCrossRefGoogle Scholar
  27. 27.
    Keding SJ, Danishefsky SJ (2004) Prospects for total synthesis: a vision for a totally synthetic vaccine targeting epithelial tumors. Proc Natl Acad Sci USA 101(33):11937–11942PubMedCrossRefGoogle Scholar
  28. 28.
    Kikuchi T, Uehara S, Ariga H, Tokunaga T, Kariyone A, Tamura T, Takatsu K (2006) Augmented induction of CD8 + cytotoxic T-cell response and antitumour resistance by T helper type 1-inducing peptide. Immunology 117(1):47–58PubMedCrossRefGoogle Scholar
  29. 29.
    Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728PubMedCrossRefGoogle Scholar
  30. 30.
    Kohlgraf KG, Gawron AJ, Higashi M, VanLith ML, Shen X, Caffrey TC, Anderson JM, Hollingsworth MA (2004) Tumor-specific immunity in MUC1.Tg mice induced by immunization with peptide vaccines from the cytoplasmic tail of CD227 (MUC1). Cancer Immunol Immunother 53(12):1068–1084PubMedCrossRefGoogle Scholar
  31. 31.
    Kudryashov V, Glunz PW, Williams LJ, Hintermann S, Danishefsky SJ, Lloyd KO (2001) Toward optimized carbohydrate-based anticancer vaccines: epitope clustering, carrier structure, and adjuvant all influence antibody responses to Lewis(y) conjugates in mice. Proc Natl Acad Sci USA 98(6):3264–3269PubMedCrossRefGoogle Scholar
  32. 32.
    Lamm DL, McGee WR, Hale K (2005) Bladder cancer: current optimal intravesical treatment. Urol Nurs 25(5):323–326 331–322PubMedGoogle Scholar
  33. 33.
    Lazoura E, Apostolopoulos V (2005) Rational peptide-based vaccine design for cancer immunotherapeutic applications. Curr Med Chem 12(6):629–639PubMedGoogle Scholar
  34. 34.
    Lo-Man R, Vichier-Guerre S, Perraut R, Deriaud E, Huteau V, BenMohamed L, Diop OM, Livingston PO, Bay S, Leclerc C (2004) A fully synthetic therapeutic vaccine candidate targeting carcinoma-associated Tn carbohydrate antigen induces tumor-specific antibodies in nonhuman primates. Cancer Res 64(14):4987–4994PubMedCrossRefGoogle Scholar
  35. 35.
    Maraskovsky E, Sjolander S, Drane DP, Schnurr M, Le TT, Mateo L, Luft T, Masterman KA, Tai TY, Chen Q, Green S, Sjolander A, Pearse MJ, Lemonnier FA, Chen W, Cebon J, Suhrbier A (2004) NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ t-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clin Cancer Res 10(8):2879–2890PubMedCrossRefGoogle Scholar
  36. 36.
    Margalit A, Sheikhet HM, Carmi Y, Berko D, Tzehoval E, Eisenbach L, Gross G (2006) Induction of antitumor immunity by CTL epitopes genetically linked to membrane-anchored beta2-microglobulin. J Immunol 176(1):217–224PubMedGoogle Scholar
  37. 37.
    McElrath MJ (1995) Selection of potent immunological adjuvants for vaccine construction. Semin Cancer Biol 6(6):375–385PubMedCrossRefGoogle Scholar
  38. 38.
    Mesa C, Fernandez LE (2004) Challenges facing adjuvants for cancer immunotherapy. Immunol Cell Biol 82(6):644–650PubMedCrossRefGoogle Scholar
  39. 39.
    Mizukami S, Kajiwara C, Ishikawa H, Katayama I, Yui K, Udono H (2008) Both CD4+ and CD8+ T cell epitopes fused to heat shock cognate protein 70 (hsc70) can function to eradicate tumors. Cancer science 99(5):1008–1015PubMedCrossRefGoogle Scholar
  40. 40.
    Monzavi-Karbassi B, Cunto-Amesty G, Luo P, Shamloo S, Blaszcyk-Thurin M, Kieber-Emmons T (2001) Immunization with a carbohydrate mimicking peptide augments tumor-specific cellular responses. Int Immunol 13(11):1361–1371PubMedCrossRefGoogle Scholar
  41. 41.
    Moron G, Dadaglio G, Leclerc C (2004) New tools for antigen delivery to the MHC class I pathway. Trends Immunol 25(2):92–97PubMedCrossRefGoogle Scholar
  42. 42.
    Nesburn AB, Bettahi I, Zhang X, Zhu X, Chamberlain W, Afifi RE, Wechsler SL, BenMohamed L (2006) Topical/mucosal delivery of sub-unit vaccines that stimulate the ocular mucosal immune system. Ocul Surf 4(4):178–187PubMedGoogle Scholar
  43. 43.
    Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54(3):187–207PubMedCrossRefGoogle Scholar
  44. 44.
    Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488–496PubMedCrossRefGoogle Scholar
  45. 45.
    Razkin J, Josserand V, Boturyn D (2006) Activatable fluorescent probes for tumor-targeting imaging in live mice. ChemMedChem 1(10):1069–1072PubMedCrossRefGoogle Scholar
  46. 46.
    Renaudet O, Dumy P (2003) Chemoselectively template-assembled glycoconjugates as mimics for multivalent presentation of carbohydrates. Org Lett 5(3):243–246PubMedCrossRefGoogle Scholar
  47. 47.
    Renaudet O, BenMohamed L, Dasgupta G, Bettahi I, Dumy P (2008) Towards a self-adjuvanting multivalent B and T cell epitope containing synthetic glycolipopeptide cancer vaccine. ChemMedChem 2(7):425–431Google Scholar
  48. 48.
    Ryan SO, Gantt KR, Finn OJ (2007) Tumor antigen-based immunotherapy and immunoprevention of cancer. Int Arch Allergy Immunol 142(3):179–189PubMedCrossRefGoogle Scholar
  49. 49.
    Simmons WJ, Koneru M, Mohindru M, Thomas R, Cutro S, Singh P, Dekruyff RH, Inghirami G, Coyle AJ, Kim BS, Ponzio NM (2005) Tim-3+ T-bet+ tumor-specific Th1 cells colocalize with and inhibit development and growth of murine neoplasms. J Immunol 174(3):1405–1415PubMedGoogle Scholar
  50. 50.
    Singh Y, Renaudet O, Defrancq E, Dumy P (2005) Preparation of a multitopic glycopeptide oligonucleotide conjugate. Org Lett 7(7):1359–1362PubMedCrossRefGoogle Scholar
  51. 51.
    Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, Burchell J, Clausen H (2006) Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 16(2):96–107PubMedCrossRefGoogle Scholar
  52. 52.
    Springer GF (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75(8):594–602PubMedCrossRefGoogle Scholar
  53. 53.
    Syrigos KN, Karayiannakis AJ, Zbar A (1999) Mucins as immunogenic targets in cancer. Anticancer Res 19(6B):5239–5244PubMedGoogle Scholar
  54. 54.
    Vichier-Guerre S, Lo-Man R, BenMohamed L, Deriaud E, Kovats S, Leclerc C, Bay S (2003) Induction of carbohydrate-specific antibodies in HLA-DR transgenic mice by a synthetic glycopeptide: a potential anti cancer vaccine for human use. J Pept Res 62(3):117–124PubMedCrossRefGoogle Scholar
  55. 55.
    Vichier-Guerre S, Lo-Man R, Huteau V, Deriaud E, Leclerc C, Bay S (2004) Synthesis and immunological evaluation of an antitumor neoglycopeptide vaccine bearing a novel homoserine Tn antigen. Bioorg Med Chem Lett 14(13):3567–3570PubMedCrossRefGoogle Scholar
  56. 56.
    Vieweg J, Dannull J (2005) Technology Insight: vaccine therapy for prostate cancer. Nat Clin Pract Urol 2(1):44–51PubMedCrossRefGoogle Scholar
  57. 57.
    von Mensdorff-Pouilly S, Kinarsky L, Engelmann K, Baldus SE, Verheijen RH, Hollingsworth MA, Pisarev V, Sherman S, Hanisch FG (2005) Sequence-variant repeats of MUC1 show higher conformational flexibility, are less densely O-glycosylated and induce differential B lymphocyte responses. Glycobiology 15(8):735–746CrossRefGoogle Scholar
  58. 58.
    Wang JC, Livingstone AM (2003) Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol 171(12):6339–6343PubMedGoogle Scholar
  59. 59.
    Warger T, Schild H, Rechtsteiner G (2007) Initiation of adaptive immune responses by transcutaneous immunization. Immunol Lett 109(1):13–20PubMedCrossRefGoogle Scholar
  60. 60.
    White K, Rades T, Kearns P, Toth I, Hook S (2006) Immunogenicity of liposomes containing lipid core peptides and the adjuvant Quil A. Pharm Res 23(7):1473–1481PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang X, Issagholian A, Berg EA, Fishman JB, Nesburn AB, BenMohamed L (2005) Th–cytotoxic T-lymphocyte chimeric epitopes extended by Nepsilon-palmitoyl lysines induce herpes simplex virus type 1-specific effector CD8+ Tc1 responses and protect against ocular infection. J Virol 79(24):15289–15301PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ilham Bettahi
    • 1
  • Gargi Dasgupta
    • 1
  • Olivier Renaudet
    • 2
  • Aziz Alami Chentoufi
    • 1
  • Xiuli Zhang
    • 1
  • Dale Carpenter
    • 1
  • Susan Yoon
    • 1
  • Pascal Dumy
    • 2
  • Lbachir BenMohamed
    • 1
    • 3
    Email author
  1. 1.Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye InstituteUniversity of California Irvine, College of MedicineIrvine, OrangeUSA
  2. 2.Département de Chimie Moléculaire, UMR-CNRS 5250, ICMG FR 2607Universite Joseph FourierGrenoble Cedex 9France
  3. 3.Center for ImmunologyUniversity of California IrvineIrvineUSA

Personalised recommendations