Cancer Immunology, Immunotherapy

, Volume 57, Issue 12, pp 1891–1902

Intratumoral immunocytokine treatment results in enhanced antitumor effects

  • Erik E. Johnson
  • Hillary D. Lum
  • Alexander L. Rakhmilevich
  • Brian E. Schmidt
  • Meghan Furlong
  • Ilia N. Buhtoiarov
  • Jacquelyn A. Hank
  • Andrew Raubitschek
  • David Colcher
  • Ralph A. Reisfeld
  • Stephen D. Gillies
  • Paul M. Sondel
Original Article

Abstract

Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled 111In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy.

Keywords

Intratumoral Immunocytokine Hu14.18-IL2 HuKS-IL2 Melanoma Neuroblastoma 

References

  1. 1.
    Altenschmidt U, Schmidt M, Groner B, Wels W (1997) Targeted therapy of schwannoma cells in immunocompetent rats with an erbB2-specific antibody-toxin. Int J Cancer 73(1):117–124PubMedCrossRefGoogle Scholar
  2. 2.
    Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2005) CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol 174(10):6013–6022PubMedGoogle Scholar
  3. 3.
    Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL (2006) Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol 176(1):309–318PubMedGoogle Scholar
  4. 4.
    Cheung NK, Lazarus H, Miraldi FD, Abramowsky CR, Kallick S, Saarinen UM, Spitzer T, Strandjord SE, Coccia PF, Berger NA (1987) Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol 5(9):1430–1440PubMedGoogle Scholar
  5. 5.
    Cheung NK, Kushner BH, Yeh SJ, Larson SM (1994) 3F8 monoclonal antibody treatment of patients with stage IV neuroblastoma: a phase II study. Prog Clin Biol Res 385:319–328PubMedGoogle Scholar
  6. 6.
    Christ O, Seiter S, Matzku S, Burger C, Zoller M (2001) Efficacy of local versus systemic application of antibody-cytokine fusion proteins in tumor therapy. Clin Cancer Res 7(4):985–998PubMedGoogle Scholar
  7. 7.
    Clarke P, Mann J, Simpson JF, Rickard-Dickson K, Primus FJ (1998) Mice transgenic for human carcinoembryonic antigen as a model for immunotherapy. Cancer Res 58(7):1469–1477PubMedGoogle Scholar
  8. 8.
    Connor JP, Felder M, Hank J, Harter J, Gan J, Gillies SD, Sondel P (2004) Ex vivo evaluation of anti-EpCAM immunocytokine huKS-IL2 in ovarian cancer. J Immunother 27(3):211–9PubMedCrossRefGoogle Scholar
  9. 9.
    Dolman CS, Mueller BM, Lode HN, Xiang R, Gillies SD, Reisfeld RA (1998) Suppression of human prostate carcinoma metastases in severe combined immunodeficient mice by interleukin 2 immunocytokine therapy. Clin Cancer Res 4(10):2551–2557PubMedGoogle Scholar
  10. 10.
    Gillies SD, Reilly EB, Lo KM, Reisfeld RA (1992) Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc Natl Acad Sci USA 89(4):1428–1432PubMedCrossRefGoogle Scholar
  11. 11.
    Gillies SD, Lan Y, Lo KM, Super M, Wesolowski J (1999) Improving the efficacy of antibody-interleukin 2 fusion proteins by reducing their interaction with Fc receptors. Cancer Res 59(9):2159–2166PubMedGoogle Scholar
  12. 12.
    Gillies SD, Lan Y, Brunkhorst B, Wong WK, Li Y, Lo KM (2002) Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol Immunother 51(8):449–460PubMedCrossRefGoogle Scholar
  13. 13.
    Guiducci C, Di CE, Parenza M, Hitt M, Giovarelli M, Musiani P, Colombo MP (2004) Intralesional injection of adenovirus encoding CC chemokine ligand 16 inhibits mammary tumor growth and prevents metastatic-induced death after surgical removal of the treated primary tumor. J Immunol 172(7):4026–4036PubMedGoogle Scholar
  14. 14.
    Handgretinger R, Baader P, Dopfer R, Klingebiel T, Reuland P, Treuner J, Reisfeld RA, Niethammer D (1992) A phase I study of neuroblastoma with the anti-ganglioside GD2 antibody 14.G2a. Cancer Immunol Immunother 35(3):199–204PubMedCrossRefGoogle Scholar
  15. 15.
    Hank JA, Surfus JE, Gan JC, Jaeger P, Gillies SD, Reisfeld RA, Sondel PM (1996) Activation of human effector cells by a tumor reactive recombinant anti-ganglioside GD (2) interleukin-2 fusion protein (ch14.18-IL2). Clin Cancer Res 2(12):1951–1959PubMedGoogle Scholar
  16. 16.
    Holden SA, Lan Y, Pardo AM, Wesolowski JS, Gillies SD (2001) Augmentation of antitumor activity of an antibody-interleukin 2 immunocytokine with chemotherapeutic agents. Clin Cancer Res 7(9):2862–2869PubMedGoogle Scholar
  17. 17.
    Idani H, Matsuoka J, Yasuda T, Kobayashi K, Tanaka N (2000) Intra-tumoral injection of doxorubicin (adriamycin) encapsulated in liposome inhibits tumor growth, prolongs survival time and is not associated with local or systemic side effects. Int J Cancer 88(4):645–651PubMedCrossRefGoogle Scholar
  18. 18.
    Imboden M, Murphy KR, Rakhmilevich AL, Neal ZC, Xiang R, Reisfeld RA, Gillies SD, Sondel PM (2001) The level of MHC class I expression on murine adenocarcinoma can change the antitumor effector mechanism of immunocytokine therapy. Cancer Res 61(4):1500–1507PubMedGoogle Scholar
  19. 19.
    Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, Van HD, Robinson BW, Nelson DJ (2003) IL–2 intratumoral immunotherapy enhances CD8+T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 171(10):5051–5063PubMedGoogle Scholar
  20. 20.
    Kendra K, Gan J, Ricci M, Surfus J, Shaker A, Super M, Frost JD, Rakhmilevich A, Hank JA, Gillies SD, Sondel PM (1999) Pharmacokinetics and stability of the ch14.18-interleukin-2 fusion protein in mice. Cancer Immunol Immunother 48(5):219–229PubMedCrossRefGoogle Scholar
  21. 21.
    King DM, Albertini MR, Schalch H, Hank JA, Gan J, Surfus J, Mahvi D, Schiller JH, Warner T, Kim K, Eickhoff J, Kendra K, Reisfeld R, Gillies SD, Sondel P (2004) Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol 22(22):4463–4473PubMedCrossRefGoogle Scholar
  22. 22.
    Ko YJ, Bubley GJ, Weber R, Redfern C, Gold DP, Finke L, Kovar A, Dahl T, Gillies SD (2004) Safety, pharmacokinetics, and biological pharmacodynamics of the immunocytokine EMD 273066 (huKS-IL2): results of a phase I trial in patients with prostate cancer. J Immunother 27(3):232–239PubMedCrossRefGoogle Scholar
  23. 23.
    Lode HN, Xiang R, Varki NM, Dolman CS, Gillies SD, Reisfeld RA (1997) Targeted interleukin-2 therapy for spontaneous neuroblastoma metastases to bone marrow. J Natl Cancer Inst 89(21):1586–1594PubMedCrossRefGoogle Scholar
  24. 24.
    Lode HN, Xiang R, Becker JC, Gillies SD, Reisfeld RA (1998) Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol Ther 80(3):277–292PubMedCrossRefGoogle Scholar
  25. 25.
    Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91(5):1706–1715PubMedGoogle Scholar
  26. 26.
    Lum HD, Buhtoiarov IN, Schmidt BE, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2006) In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages. J Leukoc Biol 79(6):1181–1192PubMedCrossRefGoogle Scholar
  27. 27.
    Mattijssen V, Balemans LT, Steerenberg PA, De Mulder PH (1992) Polyethylene-glycol-modified interleukin-2 is superior to interleukin-2 in locoregional immunotherapy of established guinea-pig tumors. Int J Cancer 51(5):812–817PubMedCrossRefGoogle Scholar
  28. 28.
    Mule JJ, Yang JC, Afreniere RL, Shu SY, Rosenberg SA (1987) Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin 2. J Immunol 139(1):285–294PubMedGoogle Scholar
  29. 29.
    Neal ZC, Imboden M, Rakhmilevich AL, Kim KM, Hank JA, Surfus J, Dixon JR, Lode HN, Reisfeld RA, Gillies SD, Sondel PM (2004) NXS2 murine neuroblastomas express increased levels of MHC class I antigens upon recurrence following NK-dependent immunotherapy. Cancer Immunol Immunother 53(1):41–52PubMedCrossRefGoogle Scholar
  30. 30.
    Neal ZC, Yang JC, Rakhmilevich AL, Buhtoiarov IN, Lum HE, Imboden M, Hank JA, Lode HN, Reisfeld RA, Gillies SD, Sondel PM (2004) Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin Cancer Res 10(14):4839–4847PubMedCrossRefGoogle Scholar
  31. 31.
    Neville ME, Robb RJ, Popescu MC (2001) In situ vaccination against a non-immunogenic tumour using intratumoural injections of liposomal interleukin 2. Cytokine 16(6):239–250PubMedCrossRefGoogle Scholar
  32. 32.
    Osenga K, Hank J, Albertini M, Gan J, Sternberg A, Seeger R, Matthay K, Reynolds P, Krailo M, Adamson P, Reisfeld R, Gillies S, Sondel P (2004) A phase I trial of immunocytokine HU14.18-IL2 in children with recurrent or refractory neuroblastoma and other GD2 positive malignancies: a study of the children’s oncology group. J Immunother 27(6):S55–S56CrossRefGoogle Scholar
  33. 33.
    Osenga KL, Hank JA, Albertini MR, Gan J, Sternberg AG, Eickhoff J, Seeger RC, Matthay KK, Reynolds CP, Twist C, Krailo M, Adamson PC, Reisfeld RA, Gillies SD, Sondel PM (2006) A phase I clinical trial of the hu14.18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the children’s oncology group. Clin Cancer Res 12(6):1750–1759PubMedCrossRefGoogle Scholar
  34. 34.
    Saleh MN, Khazaeli MB, Wheeler RH, Dropcho E, Liu T, Urist M, Miller DM, Lawson S, Dixon P, Russell CH (1992) Phase I trial of the murine monoclonal anti-GD2 antibody 14G2a in metastatic melanoma. Cancer Res 52(16):4342–4347PubMedGoogle Scholar
  35. 35.
    Sharma S, Karakousis CP, Takita H, Shin K, Brooks SP (2003) Intra-tumoral injection of CpG results in the inhibition of tumor growth in murine Colon-26 and B-16 tumors. Biotechnol Lett 25(2):149–153PubMedCrossRefGoogle Scholar
  36. 36.
    Sondel PM, Hank JA (1997) Combination therapy with interleukin-2 and antitumor monoclonal antibodies. Cancer J Sci Am 3(Suppl 1):S121–S127PubMedGoogle Scholar
  37. 37.
    Sondel PM, Hank JA (2001) Antibody-directed, effector cell-mediated tumor destruction. Hematol Oncol Clin North Am 15(4):703–721PubMedCrossRefGoogle Scholar
  38. 38.
    Sondel PM, Gillies SD (2004) Immunocytokines for Cancer Immunotherapy. In: Morse MA, Blay TM, Lyerly HK, (eds). Handbook of Cancer Vaccines. Humana Press, Totowa pp 341–358Google Scholar
  39. 39.
    Sondel PM, Hank JA, Albertini MR, Gillies SD (2007). Novel strategies for cytokine administration via targeting. In: Caligiuri MA, Lotze MT, (eds). Cancer Drug Discovery and Development, Cytokines in the Genesis and Treatment of Cancer. Humana Press, Totowa, pp 399–422Google Scholar
  40. 40.
    Voss SD, Robb RJ, Weil-Hillman G, Hank JA, Sugamura K, Tsudo M, Sondel PM (1990) Increased expression of the interleukin 2 (IL-2) receptor beta chain (p70) on CD56 + natural killer cells after in vivo IL-2 therapy: p70 expression does not alone predict the level of intermediate affinity IL-2 binding. J Exp Med 172(4):1101–1114PubMedCrossRefGoogle Scholar
  41. 41.
    Weil-Hillman G, Fisch P, Prieve AF, Sosman JA, Hank JA, Sondel PM (1989) Lymphokine-activated killer activity induced by in vivo interleukin 2 therapy: predominant role for lymphocytes with increased expression of CD2 and leu19 antigens but negative expression of CD16 antigens. Cancer Res 49(13):3680–3688PubMedGoogle Scholar
  42. 42.
    Xu X, Clarke P, Szalai G, Shively JE, Williams LE, Shyr Y, Shi E, Primus FJ (2000) Targeting and therapy of carcinoembryonic antigen-expressing tumors in transgenic mice with an antibody-interleukin 2 fusion protein. Cancer Res 60(16):4475–4484PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Erik E. Johnson
    • 1
  • Hillary D. Lum
    • 2
  • Alexander L. Rakhmilevich
    • 3
    • 5
  • Brian E. Schmidt
    • 2
  • Meghan Furlong
    • 2
  • Ilia N. Buhtoiarov
    • 3
  • Jacquelyn A. Hank
    • 3
    • 5
  • Andrew Raubitschek
    • 6
  • David Colcher
    • 6
  • Ralph A. Reisfeld
    • 7
  • Stephen D. Gillies
    • 8
  • Paul M. Sondel
    • 3
    • 4
    • 5
  1. 1.Department of SurgeryUniversity of WisconsinMadisonUSA
  2. 2.School of Medicine and Public HealthUniversity of WisconsinMadisonUSA
  3. 3.Department of Human OncologyUniversity of WisconsinMadisonUSA
  4. 4.Department of PediatricsUniversity of WisconsinMadisonUSA
  5. 5.Paul Carbone Comprehensive Cancer CenterUniversity of WisconsinMadisonUSA
  6. 6.Department of Cancer Immunotherapeutics and Tumor ImmunologyCity of HopeDuarteUSA
  7. 7.Scripps Research InstituteLa JollaUSA
  8. 8.EMD-Lexigen Research CenterBillericaUSA

Personalised recommendations