Cancer Immunology, Immunotherapy

, Volume 57, Issue 10, pp 1541–1552 | Cite as

NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy

  • Karl-Johan Malmberg
  • Yenan T. Bryceson
  • Mattias Carlsten
  • Sandra Andersson
  • Andreas Björklund
  • Niklas K. Björkström
  • Bettina C. Baumann
  • Cyril Fauriat
  • Evren Alici
  • M. Sirac Dilber
  • Hans-Gustaf Ljunggren
Symposium Paper


Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.


NK cells Cancer Cytotoxicity Immunotherapy 



Activation induced cell death


Antibody mediated cellular cytotoxicity


Acute myeloid leukemia


Anti-thymocyte globulin


Ataxia telangiectasia, mutated


ATM- and Rad3-related


Complete remission


Dendritic cell


Donor lymphocyte infusion


Epstein-Barr virus

Fas L

Fas ligand

Flt-3 L

Flt-3 ligand


Good manufacturing practice








Human leukocyte antigen




Killer-Ig-like receptors


Lymphokine activated killer


Major histocompatibility complex


Natural cytotoxicity receptor


Natural killer


Stem cell factor


Stem cell transplantation


Tumor necrosis factor


Regulatory T


TNF-related apoptosis-inducing ligand


Unique long


  1. 1.
    Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157PubMedGoogle Scholar
  2. 2.
    Algarra I, Ohlen C, Perez M, Ljunggren HG, Klein G, Garrido F, Karre K (1989) NK sensitivity and lung clearance of MHC-class-I-deficient cells within a heterogeneous fibrosarcoma. Int J Cancer 44:675–680PubMedGoogle Scholar
  3. 3.
    Alici E, Sutlu T, Bjorkstrand B, Gilljam M, Stellan B, Nahi H, Quezada HC, Gahrton G, Ljunggren HG, Dilber MS (2008) Autologous anti-tumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood (in press)Google Scholar
  4. 4.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedGoogle Scholar
  5. 5.
    Becknell B, Caligiuri MA (2005) Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 86:209–239PubMedGoogle Scholar
  6. 6.
    Boissel N, Rea D, Tieng V, Dulphy N, Brun M, Cayuela JM, Rousselot P, Tamouza R, Le Bouteiller P, Mahon FX, Steinle A, Charron D et al (2006) BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J Immunol 176:5108–5116PubMedGoogle Scholar
  7. 7.
    Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C, Maruyama K, Wakasugi H, Angevin E, Thielemans K, Le Cesne A, Chung-Scott V et al (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114:379–388PubMedGoogle Scholar
  8. 8.
    Bottino C, Castriconi R, Moretta L, Moretta A (2005) Cellular ligands of activating NK receptors. Trends Immunol 26:221–226PubMedGoogle Scholar
  9. 9.
    Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567PubMedGoogle Scholar
  10. 10.
    Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2004) IL-21 induces the functional maturation of murine NK cells. J Immunol 172:2048–2058PubMedGoogle Scholar
  11. 11.
    Brandau S, Riemensberger J, Jacobsen M, Kemp D, Zhao W, Zhao X, Jocham D, Ratliff TL, Bohle A (2001) NK cells are essential for effective BCG immunotherapy. Int J Cancer 92:697–702PubMedGoogle Scholar
  12. 12.
    Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799PubMedGoogle Scholar
  13. 13.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91PubMedGoogle Scholar
  14. 14.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166PubMedGoogle Scholar
  15. 15.
    Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, Bechensteen AG, Boelens JJ, Celkan T, Farah RA, Hultenby K, Winiarski J et al (2007) Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110:1906–1915PubMedGoogle Scholar
  16. 16.
    Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, Burger SR, Panoskaltsis-Mortari A, Keever-Taylor CA, Zhang MJ, Miller JS (2003) IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 32:177–186PubMedGoogle Scholar
  17. 17.
    Carlens S, Gilljam M, Chambers BJ, Aschan J, Guven H, Ljunggren HG, Christensson B, Dilber MS (2001) A new method for in vitro expansion of cytotoxic human CD3-CD56+ natural killer cells. Hum Immunol 62:1092–1098PubMedGoogle Scholar
  18. 18.
    Carlsten M, Bjorkstrom NK, Norell H, Bryceson Y, van Hall T, Baumann BC, Hanson M, Schedvins K, Kiessling R, Ljunggren HG, Malmberg KJ (2007) DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 67:1317–1325PubMedGoogle Scholar
  19. 19.
    Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357PubMedGoogle Scholar
  20. 20.
    Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125PubMedGoogle Scholar
  21. 21.
    Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A (2004) Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64:9180–9184PubMedGoogle Scholar
  22. 22.
    Cebo C, Da Rocha S, Wittnebel S, Turhan AG, Abdelali J, Caillat-Zucman S, Bourhis JH, Chouaib S, Caignard A (2006) The decreased susceptibility of Bcr/Abl targets to NK cell-mediated lysis in response to imatinib mesylate involves modulation of NKG2D ligands, GM1 expression, and synapse formation. J Immunol 176:864–872PubMedGoogle Scholar
  23. 23.
    Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526PubMedGoogle Scholar
  24. 24.
    Chang CC, Ferrone S (2006) NK cell activating ligands on human malignant cells: molecular and functional defects and potential clinical relevance. Semin Cancer Biol 16:383–392PubMedGoogle Scholar
  25. 25.
    Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3:413–425PubMedGoogle Scholar
  26. 26.
    Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640PubMedGoogle Scholar
  27. 27.
    Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D (2004) NK cells: innate immunity against hematological malignancies? Trends Immunol 25:328–333PubMedGoogle Scholar
  28. 28.
    Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, Gastaut JA, Pende D, Olive D, Moretta A (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667PubMedGoogle Scholar
  29. 29.
    Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P, Watier H, Thibault G (2004) Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration–effect relationship. Cancer Res 64:4664–4669PubMedGoogle Scholar
  30. 30.
    Di Santo JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257–286PubMedGoogle Scholar
  31. 31.
    Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171PubMedGoogle Scholar
  32. 32.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854PubMedGoogle Scholar
  33. 33.
    El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, Cook G, Feyler S, Richards SJ, Davies FE, Morgan GJ, Cook GP (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67:8444–8449PubMedGoogle Scholar
  34. 34.
    Farag SS, Bacigalupo A, Eapen M, Hurley C, Dupont B, Caligiuri MA, Boudreau C, Nelson G, Oudshoorn M, van Rood J, Velardi A, Maiers M et al (2006) The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant 12:876–884PubMedGoogle Scholar
  35. 35.
    Farag SS, Caligiuri MA (2004) Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma. Adv Pharmacol 51:295–318PubMedCrossRefGoogle Scholar
  36. 36.
    Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123–137PubMedGoogle Scholar
  37. 37.
    Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947PubMedGoogle Scholar
  38. 38.
    Fehniger TA, Cooper MA, Caligiuri MA (2002) Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 13:169–183PubMedGoogle Scholar
  39. 39.
    Fujii H, Trudeau JD, Teachey DT, Fish JD, Grupp SA, Schultz KR, Reid GS (2007) In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood 109:2008–2013PubMedGoogle Scholar
  40. 40.
    Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190PubMedGoogle Scholar
  41. 41.
    Gasser S, Raulet D (2006) The DNA damage response, immunity and cancer. Semin Cancer Biol 16:344–347PubMedGoogle Scholar
  42. 42.
    Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393PubMedGoogle Scholar
  43. 43.
    Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085PubMedGoogle Scholar
  44. 44.
    Glas R, Sturmhofel K, Hammerling GJ, Karre K, Ljunggren HG (1992) Restoration of a tumorigenic phenotype by beta 2-microglobulin transfection to EL-4 mutant cells. J Exp Med 175:843–846PubMedGoogle Scholar
  45. 45.
    Gonzalez S, Groh V, Spies T (2006) Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 298:121–138PubMedGoogle Scholar
  46. 46.
    Gosselin J, TomoIu A, Gallo RC, Flamand L (1999) Interleukin-15 as an activator of natural killer cell-mediated antiviral response. Blood 94:4210–4219PubMedGoogle Scholar
  47. 47.
    Guimaraes F, Guven H, Donati D, Christensson B, Ljunggren HG, Bejarano MT, Dilber MS (2006) Evaluation of ex vivo expanded human NK cells on antileukemia activity in SCID-beige mice. Leukemia 20:833–839PubMedGoogle Scholar
  48. 48.
    Guven H, Gilljam M, Chambers BJ, Ljunggren HG, Christensson B, Kimby E, Dilber MS (2003) Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL): a potential source for cellular immunotherapy. Leukemia 17:1973–1980PubMedGoogle Scholar
  49. 49.
    Hartmann F, Renner C, Jung W, da Costa L, Tembrink S, Held G, Sek A, Konig J, Bauer S, Kloft M, Pfreundschuh M (2001) Anti-CD16/CD30 bispecific antibody treatment for Hodgkin’s disease: role of infusion schedule and costimulation with cytokines. Clin Cancer Res 7:1873–1881PubMedGoogle Scholar
  50. 50.
    Hayakawa Y, Smyth MJ (2006) Innate immune recognition and suppression of tumors. Adv Cancer Res 95:293–322PubMedGoogle Scholar
  51. 51.
    Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128:192–203PubMedGoogle Scholar
  52. 52.
    Hoglund P, Ljunggren HG, Ohlen C, Ahrlund-Richter L, Scangos G, Bieberich C, Jay G, Klein G, Karre K (1988) Natural resistance against lymphoma grafts conveyed by H-2Dd transgene to C57BL mice. J Exp Med 168:1469–1474PubMedGoogle Scholar
  53. 53.
    Huntington ND, Vosshenrich CA, Di Santo JP (2007) Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703–714PubMedGoogle Scholar
  54. 54.
    Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376–383PubMedGoogle Scholar
  55. 55.
    Jager MJ, Hurks HM, Levitskaya J, Kiessling R (2002) HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol 63:444–451PubMedGoogle Scholar
  56. 56.
    Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66–70PubMedGoogle Scholar
  57. 57.
    Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678PubMedGoogle Scholar
  58. 58.
    Kiessling R, Klein E, Wigzell H (1975) Natural killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117PubMedGoogle Scholar
  59. 59.
    Klingemann HG (2005) Natural killer cell-based immunotherapeutic strategies. Cytotherapy 7:16–22PubMedGoogle Scholar
  60. 60.
    Kobayashi H, Dubois S, Sato N, Sabzevari H, Sakai Y, Waldmann TA, Tagaya Y (2005) Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105:721–727PubMedGoogle Scholar
  61. 61.
    Koh CY, Blazar BR, George T, Welniak LA, Capitini CM, Raziuddin A, Murphy WJ, Bennett M (2001) Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97:3132–3137PubMedGoogle Scholar
  62. 62.
    Koh CY, Ortaldo JR, Blazar BR, Bennett M, Murphy WJ (2003) NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood 102:4067–4075PubMedGoogle Scholar
  63. 63.
    Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–2465PubMedGoogle Scholar
  64. 64.
    Kolb HJ, Simoes B, Schmid C (2004) Cellular immunotherapy after allogeneic stem cell transplantation in hematologic malignancies. Curr Opin Oncol 16:167–173PubMedGoogle Scholar
  65. 65.
    Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedGoogle Scholar
  66. 66.
    Lauwerys BR, Garot N, Renauld JC, Houssiau FA (2000) Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 165:1847–1853PubMedGoogle Scholar
  67. 67.
    Law TM, Motzer RJ, Mazumdar M, Sell KW, Walther PJ, O’Connell M, Khan A, Vlamis V, Vogelzang NJ, Bajorin DF (1995) Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76:824–832PubMedGoogle Scholar
  68. 68.
    Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745–1759PubMedGoogle Scholar
  69. 69.
    Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244PubMedGoogle Scholar
  70. 70.
    Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329–339PubMedGoogle Scholar
  71. 71.
    Lundqvist A, Abrams SI, Schrump DS, Alvarez G, Suffredini D, Berg M, Childs R (2006) Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res 66:7317–7325PubMedGoogle Scholar
  72. 72.
    Lundqvist A, McCoy JP, Samsel L, Childs R (2007) Reduction of GVHD and enhanced anti-tumor effects after adoptive infusion of alloreactive Ly49-mismatched NK-cells from MHC-matched donors. Blood 109:3603–3606PubMedGoogle Scholar
  73. 73.
    Malmberg KJ (2004) Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 53:879–892PubMedGoogle Scholar
  74. 74.
    Malmberg KJ, Ljunggren HG (2006) Escape from immune- and nonimmune-mediated tumor surveillance. Semin Cancer Biol 16:16–31PubMedGoogle Scholar
  75. 75.
    Mendez R, Ruiz-Cabello F, Rodriguez T, Del Campo A, Paschen A, Schadendorf D, Garrido F (2007) Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunol Immunother 56:88–94PubMedGoogle Scholar
  76. 76.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057PubMedGoogle Scholar
  77. 77.
    Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L (2002) What is a natural killer cell? Nat Immunol 3:6–8PubMedGoogle Scholar
  78. 78.
    Moretta A, Marcenaro E, Sivori S, Della Chiesa M, Vitale M, Moretta L (2005) Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol 26:668–675PubMedGoogle Scholar
  79. 79.
    Moretta A, Vitale M, Bottino C, Orengo AM, Morelli L, Augugliaro R, Barbaresi M, Ciccone E, Moretta L (1993) P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med 178:597–604PubMedGoogle Scholar
  80. 80.
    Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A (2006) Surface NK receptors and their ligands on tumor cells. Semin Immunol 18:151–158PubMedGoogle Scholar
  81. 81.
    Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2004) Different checkpoints in human NK-cell activation. Trends Immunol 25:670–676PubMedGoogle Scholar
  82. 82.
    Moretta L, Moretta A (2004) Killer immunoglobulin-like receptors. Curr Opin Immunol 16:626–633PubMedGoogle Scholar
  83. 83.
    Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. Embo J 23:255–259PubMedGoogle Scholar
  84. 84.
    Mrozek E, Anderson P, Caligiuri MA (1996) Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87:2632–2640PubMedGoogle Scholar
  85. 85.
    Ozdemir O, Ravindranath Y, Savasan S (2005) Mechanisms of superior anti-tumor cytotoxic response of interleukin 15-induced lymphokine-activated killer cells. J Immunother (1997) 28:44–52Google Scholar
  86. 86.
    Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214PubMedGoogle Scholar
  87. 87.
    Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63PubMedGoogle Scholar
  88. 88.
    Passweg JR, Stern M, Koehl U, Uharek L, Tichelli A (2005) Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant 35:637–643PubMedGoogle Scholar
  89. 89.
    Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T, Favre G, Gratwohl A (2004) Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 18:1835–1838PubMedGoogle Scholar
  90. 90.
    Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, Biassoni R, Moretta A (1998) Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 188:953–960PubMedGoogle Scholar
  91. 91.
    Pitini V, Arrigo C, Naro C, Altavilla G (2007) Interleukin-2 and lymphokine-activated killer cell therapy in patients with relapsed B-cell lymphoma treated with rituximab. Clin Cancer Res 13:5497PubMedGoogle Scholar
  92. 92.
    Pogge von Strandmann E, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP, Rothe A, Boll B, Simhadri VL, Borchmann P, McKinnon PJ, Hallek M et al (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27:965–974Google Scholar
  93. 93.
    Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445PubMedGoogle Scholar
  94. 94.
    Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173–183PubMedGoogle Scholar
  95. 95.
    Roda JM, Joshi T, Butchar JP, McAlees JW, Lehman A, Tridandapani S, Carson WE III (2007) The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 13:6419–6428PubMedGoogle Scholar
  96. 96.
    Rodella L, Zamai L, Rezzani R, Artico M, Peri G, Falconi M, Facchini A, Pelusi G, Vitale M (2001) Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells. Br J Haematol 115:442–450PubMedGoogle Scholar
  97. 97.
    Rosenberg SA (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 6(Suppl 1):S2–S7PubMedGoogle Scholar
  98. 98.
    Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485–1492PubMedCrossRefGoogle Scholar
  99. 99.
    Ruggeri L, Aversa F, Martelli MF, Velardi A (2006) Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 214:202–218PubMedGoogle Scholar
  100. 100.
    Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, Urbani E, Negrin RS, Martelli MF, Velardi A (1999) Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94:333–339PubMedGoogle Scholar
  101. 101.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100PubMedGoogle Scholar
  102. 102.
    Ruggeri L, Mancusi A, Burchielli E, Aversa F, Martelli MF, Velardi A (2007) Natural killer cell alloreactivity in allogeneic hematopoietic transplantation. Curr Opin Oncol 19:142–147PubMedGoogle Scholar
  103. 103.
    Salih HR, Rammensee HG, Steinle A (2002) Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098–4102PubMedGoogle Scholar
  104. 104.
    Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A, Blazar BR, Zhang X, Elliott PJ, Murphy WJ (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303–310PubMedGoogle Scholar
  105. 105.
    Screpanti V, Wallin RP, Grandien A, Ljunggren HG (2005) Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol 42:495–499PubMedGoogle Scholar
  106. 106.
    Sentman CL, Barber MA, Barber A, Zhang T (2006) NK cell receptors as tools in cancer immunotherapy. Adv Cancer Res 95:249–292PubMedGoogle Scholar
  107. 107.
    Shahied LS, Tang Y, Alpaugh RK, Somer R, Greenspon D, Weiner LM (2004) Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J Biol Chem 279:53907–53914PubMedGoogle Scholar
  108. 108.
    Sheridan C (2006) First-in-class cancer therapeutic to stimulate natural killer cells. Nat Biotechnol 24:597PubMedGoogle Scholar
  109. 109.
    Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J, Shlomchik MJ, Emerson SG (1999) Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285:412–415PubMedGoogle Scholar
  110. 110.
    Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N (2005) Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65:11136–11145PubMedGoogle Scholar
  111. 111.
    Slavin S (2005) Allogeneic cell-mediated immunotherapy at the stage of minimal residual disease following high-dose chemotherapy supported by autologous stem cell transplantation. Acta Haematol 114:214–220PubMedGoogle Scholar
  112. 112.
    Slavin S, Naparstek E, Nagler A, Ackerstein A, Samuel S, Kapelushnik J, Brautbar C, Or R (1996) Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 87:2195–2204PubMedGoogle Scholar
  113. 113.
    Smyth MJ (2006) Imatinib mesylate–uncovering a fast track to adaptive immunity. N Engl J Med 354:2282–2284PubMedGoogle Scholar
  114. 114.
    Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, Degli-Esposti MA, Hayakawa Y (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510PubMedGoogle Scholar
  115. 115.
    Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y (2004) Cytokines in cancer immunity and immunotherapy. Immunol Rev 202:275–293PubMedGoogle Scholar
  116. 116.
    Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI (2002) Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99:1259–1266PubMedGoogle Scholar
  117. 117.
    Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861PubMedGoogle Scholar
  118. 118.
    Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582–1587PubMedGoogle Scholar
  119. 119.
    Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199:879–884PubMedGoogle Scholar
  120. 120.
    Tam YK, Martinson JA, Doligosa K, Klingemann HG (2003) Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 5:259–272PubMedGoogle Scholar
  121. 121.
    Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747PubMedGoogle Scholar
  122. 122.
    Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W (2002) Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100:1265–1273PubMedGoogle Scholar
  123. 123.
    Ullrich E, Bonmort M, Mignot G, Chaput N, Taieb J, Menard C, Viaud S, Tursz T, Kroemer G, Zitvogel L (2007) Therapy-induced tumor immunosurveillance involves IFN-producing killer dendritic cells. Cancer Res 67:851–853PubMedGoogle Scholar
  124. 124.
    Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS, Vitale M, Bottino C, Moretta L, Moretta A, Long EO (1995) Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439–449PubMedGoogle Scholar
  125. 125.
    Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6:595–601PubMedGoogle Scholar
  126. 126.
    Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110PubMedGoogle Scholar
  127. 127.
    Wallace ME, Smyth MJ (2005) The role of natural killer cells in tumor control–effectors and regulators of adaptive immunity. Springer Semin Immunopathol 27:49–64PubMedGoogle Scholar
  128. 128.
    VanOosten RL, Moore JM, Karacay B, Griffith TS (2005) Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression. Cancer Biol Ther 4:1104–1112PubMedCrossRefGoogle Scholar
  129. 129.
    Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947PubMedGoogle Scholar
  130. 130.
    Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R, Moretta L, Moretta A (1998) NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065–2072PubMedGoogle Scholar
  131. 131.
    Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156PubMedGoogle Scholar
  132. 132.
    Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L, Cocco L, Vitale M (2007) NK cells and cancer. J Immunol 178:4011–4016PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Karl-Johan Malmberg
    • 1
  • Yenan T. Bryceson
    • 1
  • Mattias Carlsten
    • 1
  • Sandra Andersson
    • 1
  • Andreas Björklund
    • 1
  • Niklas K. Björkström
    • 1
  • Bettina C. Baumann
    • 1
  • Cyril Fauriat
    • 1
  • Evren Alici
    • 2
  • M. Sirac Dilber
    • 2
  • Hans-Gustaf Ljunggren
    • 1
  1. 1.Center for Infectious Medicine, Department of Medicine, Karolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden
  2. 2.Division of Hematology, Department of Medicine Karolinska Institutet, Karolinska University Hospital HuddingeStockholmSweden

Personalised recommendations