Cancer Immunology, Immunotherapy

, Volume 57, Issue 9, pp 1279–1289 | Cite as

Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain

  • Robert M. PrinsEmail author
  • Chengyi J. Shu
  • Caius G. Radu
  • Dan D. Vo
  • Haumith Khan-Farooqi
  • Horacio Soto
  • Meng-Yin Yang
  • Muh-Shi Lin
  • Stephanie Shelly
  • Owen N. Witte
  • Antoni Ribas
  • Linda M. Liau
Original Article


It is commonly believed that T cells have difficulty reaching tumors located in the brain due to the presumed “immune privilege” of the central nervous system (CNS). Therefore, we studied the biodistribution and anti-tumor activity of adoptively transferred T cells specific for an endogenous tumor-associated antigen (TAA), gp100, expressed by tumors implanted in the brain. Mice with pre-established intracranial (i.c.) tumors underwent total body irradiation (TBI) to induce transient lymphopenia, followed by the adoptive transfer of gp10025–33-specific CD8+ T cells (Pmel-1). Pmel-1 cells were transduced to express the bioluminescent imaging (BLI) gene luciferase. Following adoptive transfer, recipient mice were vaccinated with hgp10025–33 peptide-pulsed dendritic cells (hgp10025–33/DC) and systemic interleukin 2 (IL-2). This treatment regimen resulted in significant reduction in tumor size and extended survival. Imaging of T cell trafficking demonstrated early accumulation of transduced T cells in lymph nodes draining the hgp10025–33/DC vaccination sites, the spleen and the cervical lymph nodes draining the CNS tumor. Subsequently, transduced T cells accumulated in the bone marrow and brain tumor. BLI could also detect significant differences in the expansion of gp100-specific CD8+ T cells in the treatment group compared with mice that did not receive either DC vaccination or IL-2. These differences in BLI correlated with the differences seen both in survival and tumor infiltrating lymphocytes (TIL). These studies demonstrate that peripheral tolerance to endogenous TAA can be overcome to treat tumors in the brain and suggest a novel trafficking paradigm for the homing of tumor-specific T cells that target CNS tumors.


Brain tumor Immunotherapy T cell trafficking Dendritic cells 



Bioluminescent imaging


Central nervous system


Dendritic cell


Tumor-associated antigen




Total body irradiation


Tumor-infiltrating lymphocytes



This work was supported in part by NIH/NCI grants K01 CA111402 (to RMP), R01 CA 112358 (to LML), P50 CA086306 (to AR), the Philip R. and Kenneth A. Jonsson Foundations (to LML), the Musella Foundation for Brain Tumor Research (to LML and RMP), and the Neidorf Family Foundation (to LML and RMP). ONW is an investigator of the Howard Hughes Medical Institute. CGR was supported by the In Vivo Cellular and Molecular Imaging Centers (ICMIC) Developmental Project Award. CJS was supported by the Pharmacological Sciences Training grant PHS T32 CM008652. RMP is the recipient of the Howard Temin NCI Career Development award. AR is the recipient of a STOP Cancer Career Development award and K23 CA93376.

Supplementary material

262_2008_461_MOESM1_ESM.ppt (40 kb)
Supplementary Figure 1 (PPT 41 kb)


  1. 1.
    Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174(5):2591–2601PubMedGoogle Scholar
  2. 2.
    Azadniv M, Dugger K, Bowers WJ, Weaver C, Crispe IN (2007) Imaging CD8+ T cell dynamics in vivo using a transgenic luciferase reporter. Int Immunol 19(10):1165–1173PubMedCrossRefGoogle Scholar
  3. 3.
    Becker TC, Coley SM, Wherry EJ, Ahmed R (2005) Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol 174(3):1269–1273PubMedGoogle Scholar
  4. 4.
    Calzascia T, Di Berardino-Besson W, Wilmotte R, Masson F, de Tribolet N, Dietrich PY, Walker PR (2003) Cutting edge: cross-presentation as a mechanism for efficient recruitment of tumor-specific CTL to the brain. J Immunol 171(5):2187–2191PubMedGoogle Scholar
  5. 5.
    Calzascia T, Masson F, Di Berardino-Besson W, Contassot E, Wilmotte R, Aurrand-Lions M, Ruegg C, Dietrich PY, Walker PR (2005) Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22(2):175–184PubMedCrossRefGoogle Scholar
  6. 6.
    Craft N, Bruhn KW, Nguyen BD, Prins R, Liau LM, Collisson EA De A, Kolodney MS, Gambhir SS, Miller JF (2005) Bioluminescent imaging of melanoma in live mice. J Invest Dermatol 125(1):159–165PubMedCrossRefGoogle Scholar
  7. 7.
    de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, t Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169(10):5415–5423PubMedGoogle Scholar
  8. 8.
    Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, Gambhir SS, Witte ON (2003) Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci USA 100(3):1232–1237PubMedCrossRefGoogle Scholar
  9. 9.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854PubMedCrossRefGoogle Scholar
  10. 10.
    Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357PubMedCrossRefGoogle Scholar
  11. 11.
    Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101(2):640–648PubMedCrossRefGoogle Scholar
  12. 12.
    Eguchi J, Kuwashima N, Hatano M, Nishimura F, Dusak JE, Storkus WJ, Okada H (2005) IL-4-transfected tumor cell vaccines activate tumor-infiltrating dendritic cells and promote type-1 immunity. J Immunol 174(11):7194–7201PubMedGoogle Scholar
  13. 13.
    Ehtesham M, Kabos P, Gutierrez MA, Samoto K, Black KL, Yu JS (2003) Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats. J Immunother (1997) 26(2):107–116CrossRefGoogle Scholar
  14. 14.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202(7):907–912PubMedCrossRefGoogle Scholar
  15. 15.
    Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115(6):1616–1626PubMedCrossRefGoogle Scholar
  16. 16.
    Graf MR, Prins RM, Merchant RE (2001) IL-6 secretion by a rat T9 glioma clone induces a neutrophil-dependent antitumor response with resultant cellular, antiglioma immunity. J Immunol 166(1):121–129PubMedGoogle Scholar
  17. 17.
    Hawley RG, Lieu FH, Fong AZ, Hawley TS (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1(2):136–138PubMedGoogle Scholar
  18. 18.
    Heimberger AB, Archer GE, Crotty LE, McLendon RE, Friedman AH, Friedman HS, Bigner DD, Sampson JH (2002) Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 50(1):158–164 (discussion 64–66)PubMedCrossRefGoogle Scholar
  19. 19.
    Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, Friedman HS, Bigner DD, Sampson JH (2003) Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 9(11):4247–4254PubMedGoogle Scholar
  20. 20.
    Heimberger AB, Crotty LE, Archer GE, McLendon RE, Friedman A, Dranoff G, Bigner DD, Sampson JH (2000) Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 103(1):16–25PubMedCrossRefGoogle Scholar
  21. 21.
    Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC (2004) Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 64(24):9160–9166PubMedCrossRefGoogle Scholar
  22. 22.
    Karman J, Ling C, Sandor M, Fabry Z (2004) Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173(4):2353–2361PubMedGoogle Scholar
  23. 23.
    Kim YJ, Dubey P, Ray P, Gambhir SS, Witte ON (2004) Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 6(5):331–340PubMedCrossRefGoogle Scholar
  24. 24.
    Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, Balatoni J, Teruya-Feldstein J, Heller G, May C, Ponomarev V, Ruan S, Finn R, Blasberg RG, Bornmann W, Riviere I, Sadelain M, O’Reilly RJ, Larson SM, Tjuvajev JG (2003) Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21(4):405–413PubMedCrossRefGoogle Scholar
  25. 25.
    Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, Smith DD, Forman SJ, Jensen MC, Cooper LJ (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66(22):10995–11004PubMedCrossRefGoogle Scholar
  26. 26.
    Kuwashima N, Nishimura F, Eguchi J, Sato H, Hatano M, Tsugawa T, Sakaida T, Dusak JE, Fellows-Mayle WK, Papworth GD, Watkins SC, Gambotto A, Pollack IF, Storkus WJ, Okada H (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740PubMedGoogle Scholar
  27. 27.
    Liau LM, Black KL, Prins RM, Sykes SN, DiPatre PL, Cloughesy TF, Becker DP, Bronstein JM (1999) Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg 90(6):1115–1124PubMedCrossRefGoogle Scholar
  28. 28.
    Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, Engelke K, Xia L, McEver RP, Koni PA, Silberstein LE, von Andrian UH (2005) Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22(2):259–270PubMedCrossRefGoogle Scholar
  29. 29.
    Nishimura F, Dusak JE, Eguchi J, Zhu X, Gambotto A, Storkus WJ, Okada H (2006) Adoptive transfer of type 1 CTL mediates effective anti-central nervous system tumor response: critical roles of IFN-inducible protein-10. Cancer Res 66(8):4478–4487PubMedCrossRefGoogle Scholar
  30. 30.
    Okada H, Tsugawa T, Sato H, Kuwashima N, Gambotto A, Okada K, Dusak JE, Fellows-Mayle WK, Papworth GD, Watkins SC, Chambers WH, Potter DM, Storkus WJ, Pollack IF (2004) Delivery of interferon-alpha transfected dendritic cells into central nervous system tumors enhances the antitumor efficacy of peripheral peptide-based vaccines. Cancer Res 64(16):5830–5838PubMedCrossRefGoogle Scholar
  31. 31.
    Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580PubMedCrossRefGoogle Scholar
  32. 32.
    Palmer DC, Balasubramaniam S, Hanada K, Wrzesinski C, Yu Z, Farid S, Theoret MR, Hwang LN, Klebanoff CA, Gattinoni L, Goldstein AL, Yang JC, Restifo NP (2004) Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. J Immunol 173(12):7209–7216PubMedGoogle Scholar
  33. 33.
    Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, Finn R, Akhurst T, Larson S, Blasberg R, Sadelain M, Tjuvajev JG (2001) Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3(6):480–488PubMedCrossRefGoogle Scholar
  34. 34.
    Prins RM, Bruhn KW, Craft N, Lin JW, Kim CH, Odesa SK, Miller JF, Liau LM (2006) Central nervous system tumor immunity generated by a recombinant listeria monocytogenes vaccine targeting tyrosinase related protein-2 and real-time imaging of intracranial tumor burden. Neurosurgery 58(1):169–178 (discussion 69–78)PubMedCrossRefGoogle Scholar
  35. 35.
    Prins RM, Craft N, Bruhn KW, Khan-Farooqi H, Koya RC, Stripecke R, Miller JF, Liau LM (2006) The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 176(1):157–164PubMedGoogle Scholar
  36. 36.
    Prins RM, Incardona F, Lau R, Lee P, Claus S, Zhang W, Black KL, Wheeler CJ (2004) Characterization of defective CD4-CD8-T cells in murine tumors generated independent of antigen specificity. J Immunol 172(3):1602–1611PubMedGoogle Scholar
  37. 37.
    Prins RM, Liau LM (2004) Cellular immunity and immunotherapy of brain tumors. Front Biosci 9:3124–3136PubMedCrossRefGoogle Scholar
  38. 38.
    Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491PubMedGoogle Scholar
  39. 39.
    Prins RM, Vo DD, Khan-Farooqi H, Yang MY, Soto H, Economou JS, Liau LM, Ribas A (2006) NK and CD4 cells collaborate to protect against melanoma tumor formation in the brain. J Immunol 177(12):8448–8455PubMedGoogle Scholar
  40. 40.
    Radu CG, Shu CJ, Shelly SM, Phelps ME, Witte ON (2007) Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 104(6):1937–1942PubMedCrossRefGoogle Scholar
  41. 41.
    Ray P, Tsien R, Gambhir SS (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67(7):3085–3093PubMedCrossRefGoogle Scholar
  42. 42.
    Ribas A, Butterfield LH, Hu B, Dissette VB, Chen AY, Koh A, Amarnani SN, Glaspy JA, McBride WH, Economou JS (2000) Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother 23(1):59–66PubMedCrossRefGoogle Scholar
  43. 43.
    Ribas A, Butterfield LH, McBride WH, Dissette VB, Koh A, Vollmer CM, Hu B, Chen AY, Glaspy JA, Economou JS (1999) Characterization of antitumor immunization to a defined melanoma antigen using genetically engineered murine dendritic cells. Cancer Gene Ther 6(6):523–536PubMedCrossRefGoogle Scholar
  44. 44.
    Sampson JH, Archer GE, Ashley DM, Fuchs HE, Hale LP, Dranoff G, Bigner DD (1996) Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci USA 93(19):10399–10404PubMedCrossRefGoogle Scholar
  45. 45.
    Sasaki K, Zhu X, Vasquez C, Nishimura F, Dusak JE, Huang J, Fujita M, Wesa A, Potter DM, Walker PR, Storkus WJ, Okada H (2007) Preferential expression of very late antigen-4 on type 1 CTL cells plays a critical role in trafficking into central nervous system tumors. Cancer Res 67(13):6451–6458PubMedCrossRefGoogle Scholar
  46. 46.
    Shu CJ, Guo S, Kim YJ, Shelly SM, Nijagal A, Ray P, Gambhir SS, Radu CG, Witte ON (2005) Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci USA 102(48):17412–17417PubMedCrossRefGoogle Scholar
  47. 47.
    Singh H, Serrano LM, Pfeiffer T, Olivares S, McNamara G, Smith DD, Al-Kadhimi Z, Forman SJ, Gillies SD, Jensen MC, Colcher D, Raubitschek A, Cooper LJ (2007) Combining adoptive cellular and immunocytokine therapies to improve treatment of B-lineage malignancy. Cancer Res 67(6):2872–2880PubMedCrossRefGoogle Scholar
  48. 48.
    Su H, Chang DS, Gambhir SS, Braun J (2006) Monitoring the antitumor response of naive and memory CD8 T cells in RAG1-/- mice by positron-emission tomography. J Immunol 176(7):4459–4467PubMedGoogle Scholar
  49. 49.
    Walker PR, Calzascia T, de Tribolet N, Dietrich PY (2003) T-cell immune responses in the brain and their relevance for cerebral malignancies. Brain Res Brain Res Rev 42(2):97–122PubMedCrossRefGoogle Scholar
  50. 50.
    Wang LX, Chen BG, Plautz GE (2002) Adoptive immunotherapy of advanced tumors with CD62 L-selectin(low) tumor-sensitized T lymphocytes following ex vivo hyperexpansion. J Immunol 169(6):3314–3320PubMedGoogle Scholar
  51. 51.
    Wang LX, Li R, Yang G, Lim M, O’Hara A, Chu Y, Fox BA, Restifo NP, Urba WJ, Hu HM (2005) Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing. Cancer Res 65(22):10569–10577PubMedCrossRefGoogle Scholar
  52. 52.
    Wang LX, Shu S, Disis ML, Plautz GE (2007) Adoptive transfer of tumor-primed, in vitro-activated, CD4+ T effector cells (TEs) combined with CD8+ TEs provides intratumoral TE proliferation and synergistic antitumor response. Blood 109(11):4865–4876PubMedCrossRefGoogle Scholar
  53. 53.
    Wang LX, Shu S, Plautz GE (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65(20):9547–9554PubMedCrossRefGoogle Scholar
  54. 54.
    Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J, Fellows-Mayle W, Storkus WJ, Walker PR, Salazar AM, Okada H (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Robert M. Prins
    • 1
    • 2
    • 3
    • 4
    Email author
  • Chengyi J. Shu
    • 5
  • Caius G. Radu
    • 3
    • 5
  • Dan D. Vo
    • 6
  • Haumith Khan-Farooqi
    • 1
  • Horacio Soto
    • 1
  • Meng-Yin Yang
    • 1
  • Muh-Shi Lin
    • 1
  • Stephanie Shelly
    • 5
  • Owen N. Witte
    • 2
    • 3
    • 5
    • 7
  • Antoni Ribas
    • 3
    • 6
    • 8
  • Linda M. Liau
    • 1
    • 3
    • 4
  1. 1.Department of Surgery, Division of NeurosurgeryDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of Microbiology, Immunology and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine at UCLALos AngelesUSA
  4. 4.Brain Research InstituteDavid Geffen School of Medicine at UCLALos AngelesUSA
  5. 5.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at UCLALos AngelesUSA
  6. 6.Department of Surgery, Division of Surgical OncologyDavid Geffen School of Medicine at UCLALos AngelesUSA
  7. 7.Howard Hughes Medical InstituteDavid Geffen School of Medicine at UCLALos AngelesUSA
  8. 8.Department of Medicine, Division of Hematology-OncologyDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations