Cancer Immunology, Immunotherapy

, Volume 57, Issue 8, pp 1105–1114 | Cite as

Anti-angiogenic active immunotherapy: a new approach to cancer treatment

  • Jianping Pan
  • Pengfeng Jin
  • Jie Yan
  • Dieter Kabelitz
Review

Abstract

Tumor angiogenesis plays an important role in tumor growth, aggression and metastasis. Many molecules have been demonstrated as positive regulators of angiogenesis, including vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and others. In recent years, significant progress has been made in the research on anti-angiogenic strategies for tumor therapies. In this review, anti-angiogenic active immunotherapies for tumors based on vaccination with xenogeneic homologous molecules and non-xenogeneic homologous molecules are discussed.

Keywords

Tumor Angiogenesis Active immunotherapy 

Abbreviations

VEGF

Vascular endothelial growth factor

aFGF

Acidic fibroblast growth factor

bFGF

Basic fibroblast growth factor

EGF (R)

Epidermal growth factor (receptor)

TGF-α/β

Transforming growth factor-α/β

PlGF

Placental growth factor

ECs

Endothelial cells

EO-EPCs

Early-outgrowth of endothelial progenitor cells

MVEGF-P

Recombinant eukaryotic expression plasmid harboring VEGF-encoding gene of mice

XVEGF-P

Recombinant eukaryotic expression plasmid harboring VEGF-encoding gene of Xenopus laevis

FGFR-1

Fibroblast growth factor receptor-1

MMPs

Metalloproteinases

sVEGFR-2-IFN-γ

Soluble VEGFR-2 and IFN-γ fusion gene

TAMs

Tumor associated macrophages

Notes

Acknowledgments

This work was supported by a grant from the Science and Technology Bureau of Zhejiang Province, P.R. China (No. 2005C23005).

References

  1. 1.
    Albini A, Melchiori A, Santi L et al (1991) Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst 83:775–779PubMedCrossRefGoogle Scholar
  2. 2.
    Asakage M, Tsuno NH, Kitayama J et al (2006) Early-outgrowth of endothelial progenitor cells can function as antigen-presenting cells. Cancer Immunol Immunother 55:708–716PubMedCrossRefGoogle Scholar
  3. 3.
    Bequet-Romero M, Ayala M, Acevedo BE, Rodríguez EG, Ocejo OL, Torrens I, Gavilondo JV (2007) Prophylactic naked DNA vaccination with the human vascular endothelial growth factor induces an anti-tumor response in C57Bl/6 mice. Angiogenesis 10:23–34PubMedCrossRefGoogle Scholar
  4. 4.
    Blagosklonny MV (2004) Antiangiogenic therapy and tumor progression. Cancer Cell 5:13–17PubMedCrossRefGoogle Scholar
  5. 5.
    Dias S, Hattori K, Zhu Z et al (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106:511–521PubMedCrossRefGoogle Scholar
  6. 6.
    Caldini R, Barletta E, Del Rosso M et al (2005) FGF2-mediated upregulation of urokinase-type plasminogen activator expression requires a MAP-kinase dependent activation of poly (ADP-ribose) polymerase. J Cell Physiol 202:125–134PubMedCrossRefGoogle Scholar
  7. 7.
    Dong Y, Qian J, Ramy I et al (2006) Identification of H-2Db-specific CD8+ T-cell epitopes from mouse VEGFR2 that can inhibit angiogenesis and tumor growth. J Immunother 29:32–40PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrajoli A, Manshouri T, Estrov Z et al (2001) High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin Cancer Res 7:795–799PubMedGoogle Scholar
  9. 9.
    Ferrara N (2002) VEGF and the quest for tumor angiogenesis factors. Nat Rev Cancer 2:795–803PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 6:669–676CrossRefGoogle Scholar
  11. 11.
    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974PubMedCrossRefGoogle Scholar
  12. 12.
    Gutheil JC, Campbell TN, Pierce PR et al (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the Integrin αvβ3. Clin Cancer Res 6:3056–3061PubMedGoogle Scholar
  13. 13.
    Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11:689–708PubMedCrossRefGoogle Scholar
  14. 14.
    He QM, Wei YQ, Tian L et al (2003) Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J Biol Chem 278:21831–21836PubMedCrossRefGoogle Scholar
  15. 15.
    Hofmeister V, Schrama D, Becker JC et al (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 57:1–17PubMedCrossRefGoogle Scholar
  16. 16.
    Hu B, Wei YQ, Tian L et al (2005) Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor. J Immunother 28:236–244PubMedCrossRefGoogle Scholar
  17. 17.
    Itoh T, Tanioka M, Yoshida H et al (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051PubMedGoogle Scholar
  18. 18.
    Kamstock D, Elmslie R, Thamm D, Dow S (2007) Evaluation of a xenogeneic VEGF vaccine in dogs with soft tissue sarcoma. Cancer Immunol Immunother 56:1299–1309PubMedCrossRefGoogle Scholar
  19. 19.
    Kanda S, Miyata Y, Kanetake H (2006) Current status and perspective of antiangiogenic therapy for cancer: urinary cancer. Int J Clin Oncol 11:90–107PubMedCrossRefGoogle Scholar
  20. 20.
    Karsan A, Yee E, Poirier GG et al (1997) Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol 151:1775–1784PubMedGoogle Scholar
  21. 21.
    Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515PubMedCrossRefGoogle Scholar
  22. 22.
    Kerbel RS, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739PubMedCrossRefGoogle Scholar
  23. 23.
    Kornberg TB, Krasnow MA (2000) The Drosophila genome sequence: implications for biology and medicine. Science 287:2218–2220PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SH, Mizutani N, Mizutani M et al (2006) Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immunol Immunother 55:1565–1574PubMedCrossRefGoogle Scholar
  25. 25.
    Lewen S, Zhou H, Hu HD et al (2008) A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol Immunother (in press)Google Scholar
  26. 26.
    Li Y, Wang MN, Li H et al (2002) Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med 195:1575–1584PubMedCrossRefGoogle Scholar
  27. 27.
    Liu JY, Wei YQ, Yang L et al (2003) Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood 102:1815–1823PubMedCrossRefGoogle Scholar
  28. 28.
    Liu C, Sun C, Huang H et al (2003) Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 63:2957–2964PubMedGoogle Scholar
  29. 29.
    Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336PubMedCrossRefGoogle Scholar
  30. 30.
    Luo Y, Zhou H, Krueger J et al (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141PubMedCrossRefGoogle Scholar
  31. 31.
    Lou YY, Wei QY, Yang L et al (2002) Immunogene therapy of tumors with vaccine based on the ligand binding domain of chick homologous integrin beta3. Immunol Invest 31:51–69PubMedCrossRefGoogle Scholar
  32. 32.
    Murthy RV, Arbman G, Gao J et al (2005) Legumain expression in relation to clinicopathologic and biological variables in colorectal cancer. Clin Cancer Res 11:2293–2299PubMedCrossRefGoogle Scholar
  33. 33.
    Nair S, Boczkowski D, Moeller B et al (2003) Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102:964–971PubMedCrossRefGoogle Scholar
  34. 34.
    Nithammer AG, Xiang R, Becker JC et al (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8:1369–1375CrossRefGoogle Scholar
  35. 35.
    Oosterling SJ, van der Bij GJ, Meijer GA et al (2005) Macrophages direct tumor histology and clinical outcome in a colon cancer model. J Pathol 207:147–155PubMedCrossRefGoogle Scholar
  36. 36.
    Pan J, Heiser A, Marget M et al (2005) Enhanced antimetastatic effect of fetal liver kinase 1 extracellular domain and interferon-gamma fusion gene-modified dendritic cell vaccine. Gene Ther 12:742–750PubMedCrossRefGoogle Scholar
  37. 37.
    Pan J, Zhang M, Wang J et al (2004) Interferon-gamma is an autocrine mediator for dendritic cell maturation. Immunol Lett 94:141–151PubMedCrossRefGoogle Scholar
  38. 38.
    Pan J, Zhang M, Wang J et al (2005) Intratumoral injection of interferon-gamma gene-modified dendritic cells elicits potent antitumor effects: effective induction of tumor-specific CD8+ CTL response. J Cancer Res Clin Oncol 131:468–478PubMedCrossRefGoogle Scholar
  39. 39.
    Plum SM, Holaday JW, Ruiz A et al (2000) Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine 19:1294–1303PubMedCrossRefGoogle Scholar
  40. 40.
    Plum SM, Vu HA, Mercer B et al (2004) Generation of a specific immunological response to FGF-2 does not affect wound healing or reproduction. Immunopharmacol Immunotoxicol 26:29–41PubMedCrossRefGoogle Scholar
  41. 41.
    Qin Z, Blankenstein T (2000) CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12:677–686PubMedCrossRefGoogle Scholar
  42. 42.
    Reisfeld RA, Niethammer AG, Luo Y et al (2004) DNA vaccines designed to inhibit tumor growth by suppression of angiogenesis. Int Arch Allergy Immunol 133:295–304PubMedCrossRefGoogle Scholar
  43. 43.
    Rini BI, Rathmell WK (2007) Biological aspects and binding strategies of vascular endothelial growth factor in renal cell carcinoma. Clin Cancer Res 13:741–746CrossRefGoogle Scholar
  44. 44.
    Schneider BP, Sledge GW (2007) Drug insight: VEGF as a therapeutic target for breast cancer. Nat Clin Pract Oncol 4:181–189PubMedCrossRefGoogle Scholar
  45. 45.
    Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66PubMedCrossRefGoogle Scholar
  46. 46.
    Shant K, Li CG (2001) Targeting of vasculature in cancer and other angiogenic diseases. Trends Immunol 22:129–133CrossRefGoogle Scholar
  47. 47.
    Shojaei F, Ferrara N (2007) Antiangiogenesis to treat cancer and intraocular neovascular disorders. Lab Invest 87:227–230PubMedCrossRefGoogle Scholar
  48. 48.
    St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202PubMedCrossRefGoogle Scholar
  49. 49.
    Su JM, Wei YQ, Tian L et al (2003) Active immunotherapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res 63:600–607PubMedGoogle Scholar
  50. 50.
    Tokuda H, Kozawa O, Uematsu T et al (2000) Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p44/p42 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J Bone Miner Res 15:2371–2379PubMedCrossRefGoogle Scholar
  51. 51.
    Valesky M, Spang AJ, Fisher GW et al (2002) Noninvasive dynamic fluorescence imaging of human melanomas reveals that targeted inhibition of bFGF or FGFR-1 in melanoma cells blocks tumor growth by apoptosis. Mol Med 8:103–112PubMedGoogle Scholar
  52. 52.
    Veikkola T, Karkkainen M, Claesson-Welsh L et al (2000) Regulation of angiogenesis via endothelial growth factor receptors. Cancer Rev 60:203–212Google Scholar
  53. 53.
    Wada S, Tsunoda T, Baba T et al (2005) Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor 2. Cancer Res 65:4939–4946PubMedCrossRefGoogle Scholar
  54. 54.
    Wei YQ, Huang MJ, Yang L et al (2001) Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factors as a model antigen. Pro Natl Acad Sci USA 98:11545–11550CrossRefGoogle Scholar
  55. 55.
    Wei YQ, Wang QR, Zhao X et al (2000) Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 6:1160–1166PubMedCrossRefGoogle Scholar
  56. 56.
    William G, Stetler S (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103:1237–1241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jianping Pan
    • 1
  • Pengfeng Jin
    • 1
  • Jie Yan
    • 1
  • Dieter Kabelitz
    • 2
  1. 1.Department of Medical Microbiology and ParasitologyZhejiang University School of MedicineHangzhouPeople’s Republic of China
  2. 2.Institute of ImmunologyUniversitätsklinikum Schleswig-Holstein Campus KielKielGermany

Personalised recommendations