Cancer Immunology, Immunotherapy

, Volume 57, Issue 4, pp 443–451 | Cite as

Acquired immune response to oncogenic human papillomavirus associated with prophylactic cervical cancer vaccines

Review

Abstract

Human papillomavirus (HPV) is a common infection among women and a necessary cause of cervical cancer. Oncogenic HPV types infecting the anogenital tract have the potential to induce natural immunity, but at present we do not clearly understand the natural history of infection in humans and the mechanisms by which the virus can evade the host immune response. Natural acquired immune responses against HPV may be involved in the clearance of infection, but persistent infection with oncogenic virus types leads to the development of precancerous lesions and cancer. B cell responses are important for viral neutralization, but antibody responses in patients with cervical cancer are poor. Prophylactic vaccines targeting oncogenic virus types associated with cervical cancer have the potential to prevent up to 80% of cervical cancers by targeting HPV types 16 and 18. Clinical data show that prophylactic vaccines are effective in inducing antibody responses and in preventing persistent infection with HPV, as well as the subsequent development of high-grade cervical intraepithelial neoplasia. This article reviews the known data regarding natural immune responses to HPV and those developed by prophylactic vaccination.

Keywords

Immunity HPV CIN Persistent infection Viral neutralization 

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74PubMedGoogle Scholar
  2. 2.
    World Health Organization: Human papillomavirus 2007. Available from http://www.who.int/vaccine_research/diseases/viral_cancers/en/index3.html
  3. 3.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43PubMedGoogle Scholar
  4. 4.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12PubMedCrossRefGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention (2004) Genital HPV infection-CDC fact sheetGoogle Scholar
  6. 6.
    Dunne EF, Unger ER, Sternberg M, McQuillan G, Swan DC, Patel SS, Markowitz LE (2007) Prevalence of HPV infection among females in the united states. JAMA 297(8):813PubMedCrossRefGoogle Scholar
  7. 7.
    Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, Clifford GM (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 121(3):621PubMedCrossRefGoogle Scholar
  8. 8.
    Einstein M, Burk R (2001) Persistent human papillomavirus infection: definitions and clinical implications. Papillomavirus Rep 12:119Google Scholar
  9. 9.
    Bosch F (2003) Human papillomavirus and cervical cancer burden and assessment of causality. J Natl Cancer Inst Monogr 31:3PubMedGoogle Scholar
  10. 10.
    Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55(4):244PubMedGoogle Scholar
  11. 11.
    Wang SS, Sherman ME, Hildesheim A, Lacey JV Jr, Devesa S (2004) Cervical adenocarcinoma and squamous cell carcinoma incidence trends among white women and black women in the United States for 1976–2000. Cancer 100(5):1035PubMedCrossRefGoogle Scholar
  12. 12.
    Stoler MH (2004) The pathology of cervical neoplasia. In: Rohan TE, Shah KV (eds) Cervical cancer: from etiology to prevention. Kluwer, Dordrecht, p 3CrossRefGoogle Scholar
  13. 13.
    Einstein MH, Cruz Y, El-Awady MK, Popescu NC, DiPaolo JA, van Ranst M, Kadish AS, Romney S, Runowicz CD, Burk RD (2002) Utilization of the human genome sequence localizes human papillomavirus type 16 DNA integrated into the TNFAIP2 gene in a fatal cervical cancer from a 39-year-old woman. Clin Cancer Res 8(2):549PubMedGoogle Scholar
  14. 14.
    zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 92(9):690CrossRefGoogle Scholar
  15. 15.
    Wentzensen N, Vinokurova S, von Knebel Doeberitz M (2004) Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64(11):3878PubMedCrossRefGoogle Scholar
  16. 16.
    Duensing S, Munger K (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62(23):7075PubMedGoogle Scholar
  17. 17.
    Duensing S, Munger K (2001) Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta 1471(2):M81PubMedGoogle Scholar
  18. 18.
    Ahmed AM, Madkan V, Tyring SK (2006) Human papillomaviruses and genital disease. Dermatol Clin 24(2):157PubMedCrossRefGoogle Scholar
  19. 19.
    Stern PL (2005) Immune control of human papillomavirus (HPV) associated anogenital disease and potential for vaccination. J Clin Virol 32(Suppl 1):S72PubMedCrossRefGoogle Scholar
  20. 20.
    Schlecht NF, Kulaga S, Robitaille J, Ferreira S, Santos M, Miyamura RA, Duarte-Franco E, Rohan TE, Ferenczy A, Villa LL, Franco EL (2001) Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA 286(24):3106PubMedCrossRefGoogle Scholar
  21. 21.
    Wright TC (2006) Pathology of hpv infection at the cytologic and histologic levels: basis for a 2-tiered morphologic classification system. Int J Gynecol Obstet 94(Suppl 1):S22CrossRefGoogle Scholar
  22. 22.
    Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD (1998) Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338(7):423PubMedCrossRefGoogle Scholar
  23. 23.
    Herrero R, Hildesheim A, Bratti C, Sherman ME, Hutchinson M, Morales J, Balmaceda I, Greenberg MD, Alfaro M, Burk RD, Wacholder S, Plummer M, Schiffman M (2000) Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J Natl Cancer Inst 92(6):464PubMedCrossRefGoogle Scholar
  24. 24.
    Sellors JW, Karwalajtys TL, Kaczorowski J, Mahony JB, Lytwyn A, Chong S, Sparrow J, Lorincz A (2003) Incidence, clearance and predictors of human papillomavirus infection in women. CMAJ 168(4):421PubMedGoogle Scholar
  25. 25.
    Woodman CB, Collins S, Winter H, Bailey A, Ellis J, Prior P, Yates M, Rollason TP, Young LS (2001) Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 357(9271):1831PubMedCrossRefGoogle Scholar
  26. 26.
    Einstein MH, Studentsov YY, Ho GYF, Fazzari M, Marks M, Kadish AS, Goldberg GL, Runowicz CD, Burk RD (2006) Combined human papillomavirus DNA and human papillomavirus-like particle serologic assay to identify women at risk for high-grade cervical intraepithelial neoplasia. Int J Cancer 120:55CrossRefGoogle Scholar
  27. 27.
    Holowaty P, Miller AB, Rohan T, To T (1999) Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst 91(3):252PubMedCrossRefGoogle Scholar
  28. 28.
    Stoler MH, Schiffman M (2001) Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL triage study. JAMA 285(11):1500PubMedCrossRefGoogle Scholar
  29. 29.
    Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, Rush BB, Glass AG, Schiffman M (2005) The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J Natl Cancer Inst 97(14):1072PubMedCrossRefGoogle Scholar
  30. 30.
    Castle PE, Solomon D, Schiffman M, Wheeler CM (2005) Human papillomavirus type 16 infections and 2-year absolute risk of cervical precancer in women with equivocal or mild cytologic abnormalities. J Natl Cancer Inst 97(14):1066PubMedGoogle Scholar
  31. 31.
    Burk RD, Ho GY, Beardsley L, Lempa M, Peters M, Bierman R (1996) Sexual behavior and partner characteristics are the predominant risk factors for genital human papillomavirus infection in young women. J Infect Dis 174(4):679PubMedGoogle Scholar
  32. 32.
    Flores R, Papenfuss M, Klimecki WT, Giuliano AR (2006) Cross-sectional analysis of oncogenic HPV viral load and cervical intraepithelial neoplasia. Int J Cancer 118(5):1187PubMedCrossRefGoogle Scholar
  33. 33.
    Ho GY, Studentsov YY, Bierman R, Burk RD (2004) Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiol Biomarkers Prev 13(1):110PubMedCrossRefGoogle Scholar
  34. 34.
    Bais AG, Beckmann I, Lindemans J, Ewing PC, Meijer CJ, Snijders PJ, Helmerhorst TJ (2005) A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions. J Clin Pathol 58(10):1096PubMedCrossRefGoogle Scholar
  35. 35.
    Clerici M, Merola M, Ferrario E, Trabattoni D, Villa ML, Stefanon B, Venzon DJ, Shearer GM, De Palo G, Clerici E (1997) Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. J Natl Cancer Inst 89(3):245PubMedCrossRefGoogle Scholar
  36. 36.
    de Jong A, van Poelgeest MI, van der Hulst JM, Drijfhout JW, Fleuren GJ, Melief CJ, Kenter G, Offringa R, van der Burg SH (2004) Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 64(15):5449PubMedCrossRefGoogle Scholar
  37. 37.
    Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM, Huang SC (2001) Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol 167(5):2972PubMedGoogle Scholar
  38. 38.
    Steele JC, Mann CH, Rookes S, Rollason T, Murphy D, Freeth MG, Gallimore PH, Roberts S (2005) T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia. Br J Cancer 93(2):248PubMedCrossRefGoogle Scholar
  39. 39.
    Kobayashi A, Greenblatt RM, Anastos K, Minkoff H, Massad LS, Young M, Levine AM, Darragh TM, Weinberg V, Smith-McCune KK (2004) Functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection. Cancer Res 64(18):6766PubMedCrossRefGoogle Scholar
  40. 40.
    Petry KU, Scheffel D, Bode U, Gabrysiak T, Kochel H, Kupsch E, Glaubitz M, Niesert S, Kuhnle H, Schedel I (1994) Cellular immunodeficiency enhances the progression of human papillomavirus-associated cervical lesions. Int J Cancer 57(6):836PubMedCrossRefGoogle Scholar
  41. 41.
    Gambhira R, Gravitt PE, Bossis I, Stern PL, Viscidi RP, Roden RB (2006) Vaccination of healthy volunteers with human papillomavirus type 16 L2E7E6 fusion protein induces serum antibody that neutralizes across papillomavirus species. Cancer Res 66(23):11120PubMedCrossRefGoogle Scholar
  42. 42.
    McHeyzer-Williams LJ, McHeyzer-Williams MG (2005) Antigen-specific memory B cell development. Annu Rev Immunol 23:487PubMedCrossRefGoogle Scholar
  43. 43.
    Vajdy M (2006) Generation and maintenance of mucosal memory B cell responses? Curr Med Chem 13(25):3023PubMedCrossRefGoogle Scholar
  44. 44.
    Olsson SE, Villa LL, Costa RL, Petta CA, Andrade RP, Malm C, Iversen OE, Hoye J, Steinwall M, Riis-Johannessen G, Andersson-Ellstrom A, Elfgren K, von Krogh G, Lehtinen M, Paavonen J, Tamms GM, Giacoletti K, Lupinacci L, Esser MT, Vuocolo SC, Saah AJ, Barr E (2007) Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine 25(26):4931PubMedCrossRefGoogle Scholar
  45. 45.
    Carter JJ, Koutsky LA, Hughes JP, Lee SK, Kuypers J, Kiviat N, Galloway DA (2000) Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis 181(6):1911PubMedCrossRefGoogle Scholar
  46. 46.
    Viscidi RP, Schiffman M, Hildesheim A, Herrero R, Castle PE, Bratti MC, Rodriguez AC, Sherman ME, Wang S, Clayman B, Burk RD (2004) Seroreactivity to human papillomavirus (HPV) types 16, 18, or 31 and risk of subsequent HPV infection: results from a population-based study in Costa Rica. Cancer Epidemiol Biomarkers Prev 13(2):324PubMedCrossRefGoogle Scholar
  47. 47.
    Viscidi RP, Snyder B, Cu-Uvin S, Hogan JW, Clayman B, Klein RS, Sobel J, Shah KV (2005) Human papillomavirus capsid antibody response to natural infection and risk of subsequent HPV infection in HIV-positive and HIV-negative women. Cancer Epidemiol Biomarkers Prev 14(1):283PubMedGoogle Scholar
  48. 48.
    Einstein MH, Studentsov YY, Ho GY, Fazzari M, Marks M, Kadish AS, Goldberg GL, Runowicz CD, Burk RD (2007) Combined human papillomavirus DNA and human papillomavirus-like particle serologic assay to identify women at risk for high-grade cervical intraepithelial neoplasia. Int J Cancer 120(1):55PubMedCrossRefGoogle Scholar
  49. 49.
    Mestecky J, Moldoveanu Z, Russell MW (2005) Immunologic uniqueness of the genital tract: challenge for vaccine development. Am J Reprod Immunol 53(5):208PubMedCrossRefGoogle Scholar
  50. 50.
    Rocha-Zavaleta L, Ambrosio JP, Mora-Garcia Mde L, Cruz-Talonia F, Hernandez-Montes J, Weiss-Steider B, Ortiz-Navarrete V, Monroy-Garcia A (2004) Detection of antibodies against a human papillomavirus (HPV) type 16 peptide that differentiate high-risk from low-risk hpv-associated low-grade squamous intraepithelial lesions. J Gen Virol 85(Pt 9):2643PubMedCrossRefGoogle Scholar
  51. 51.
    Sasagawa T, Rose RC, Azar KK, Sakai A, Inoue M (2003) Mucosal immunoglobulin-A and -G responses to oncogenic human papilloma virus capsids. Int J Cancer 104(3):328PubMedCrossRefGoogle Scholar
  52. 52.
    Nardelli-Haefliger D, Wirthner D, Schiller JT, Lowy DR, Hildesheim A, Ponci F, De Grandi P (2003) Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J Natl Cancer Inst 95(15):1128PubMedGoogle Scholar
  53. 53.
    The Future II Study Group (2007) Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 356(19):1915CrossRefGoogle Scholar
  54. 54.
    Paavonen J, Jenkins D, Bosch FX, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter DL, Kitchener HC, Castellsague X, de Carvalho NS, Skinner SR, Harper DM, Hedrick JA, Jaisamrarn U, Limson GA, Dionne M, Quint W, Spiessens B, Peeters P, Struyf F, Wieting SL, Lehtinen MO, Dubin G (2007) Efficacy of a prophylactic adjuvanted bivalent l1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369(9580):2161PubMedCrossRefGoogle Scholar
  55. 55.
    Villa LL, Costa RL, Petta CA, Andrade RP, Paavonen J, Iversen OE, Olsson SE, Hoye J, Steinwall M, Riis-Johannessen G, Andersson-Ellstrom A, Elfgren K, Krogh G, Lehtinen M, Malm C, Tamms GM, Giacoletti K, Lupinacci L, Railkar R, Taddeo FJ, Bryan J, Esser MT, Sings HL, Saah AJ, Barr E (2006) High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br J Cancer 95(11):1459PubMedCrossRefGoogle Scholar
  56. 56.
    Christensen ND, Hopfl R, DiAngelo SL, Cladel NM, Patrick SD, Welsh PA, Budgeon LR, Reed CA, Kreider JW (1994) Assembled baculovirus-expressed human papillomavirus type 11 L1 capsid protein virus-like particles are recognized by neutralizing monoclonal antibodies and induce high titres of neutralizing antibodies. J Gen Virol 75(Pt 9):2271PubMedGoogle Scholar
  57. 57.
    Giannini SL, Hanon E, Moris P, Van Mechelen M, Morel S, Dessy F, Fourneau MA, Colau B, Suzich J, Losonksy G, Martin MT, Dubin G, Wettendorff MA (2006) Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24(33-34):5937PubMedCrossRefGoogle Scholar
  58. 58.
    Rose RC, Reichman RC, Bonnez W (1994) Human papillomavirus (HPV) type 11 recombinant virus-like particles induce the formation of neutralizing antibodies and detect HPV-specific antibodies in human sera. J Gen Virol 75(Pt 8):2075PubMedCrossRefGoogle Scholar
  59. 59.
    Whittle H, Jaffar S, Wansbrough M, Mendy M, Dumpis U, Collinson A, Hall A (2002) Observational study of vaccine efficacy 14 years after trial of Hepatitis B vaccination in Gambian children. BMJ 325(7364):569PubMedCrossRefGoogle Scholar
  60. 60.
    Villa LL, Ault KA, Giuliano AR, Costa RL, Petta CA, Andrade RP, Brown DR, Ferenczy A, Harper DM, Koutsky LA, Kurman RJ, Lehtinen M, Malm C, Olsson SE, Ronnett BM, Skjeldestad FE, Steinwall M, Stoler MH, Wheeler CM, Taddeo FJ, Yu J, Lupinacci L, Railkar R, Marchese R, Esser MT, Bryan J, Jansen KU, Sings HL, Tamms GM, Saah AJ, Barr E (2006) Immunologic responses following administration of a vaccine targeting human papillomavirus types 6, 11, 16, and 18. Vaccine 24(27-28):5571PubMedCrossRefGoogle Scholar
  61. 61.
    Gall S, Teixeira J, Wheeler C, Naud P, Harper D, Franco E, Quint W, Zahaf T, Schuind A, Jenkins D, G D Group on behalf of the HPV Vaccine Study Group (2007) Substantial impact on precancerous lesions and HPV infections through 5.5 years in women vaccinated with the hpv-16/18 L1 VLP AS04 candidate vaccine. Abstract, Annual meeting of the American Association for Cancer Research, 14–18 April, Los Angeles, CAGoogle Scholar
  62. 62.
    Bryan JT (2007) Developing an HPV vaccine to prevent cervical cancer and genital warts. Vaccine 25(16):3001PubMedCrossRefGoogle Scholar
  63. 63.
    Opalka D, Lachman CE, MacMullen SA, Jansen KU, Smith JF, Chirmule N, Esser MT (2003) Simultaneous quantitation of antibodies to neutralizing epitopes on virus-like particles for human papillomavirus types 6, 11, 16, and 18 by a multiplexed luminex assay. Clin Diagn Lab Immunol 10(1):108PubMedCrossRefGoogle Scholar
  64. 64.
    Villa LL, Costa RL, Petta CA, Andrade RP, Ault KA, Giuliano AR, Wheeler CM, Koutsky LA, Malm C, Lehtinen M, Skjeldestad FE, Olsson SE, Steinwall M, Brown DR, Kurman RJ, Ronnett BM, Stoler MH, Ferenczy A, Harper DM, Tamms GM, Yu J, Lupinacci L, Railkar R, Taddeo FJ, Jansen KU, Esser MT, Sings HL, Saah AJ, Barr E (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 6(5):271PubMedCrossRefGoogle Scholar
  65. 65.
    Kawana K, Yasugi T, Kanda T, Kino N, Oda K, Okada S, Kawana Y, Nei T, Takada T, Toyoshima S, Tsuchiya A, Kondo K, Yoshikawa H, Tsutsumi O, Taketani Y (2003) Safety and immunogenicity of a peptide containing the cross-neutralization epitope of HPV16 L2 administered nasally in healthy volunteers. Vaccine 21(27-30):4256PubMedCrossRefGoogle Scholar
  66. 66.
    Roden RB, Yutzy WHt, Fallon R, Inglis S, Lowy DR, Schiller JT (2000) Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology 270(2):254PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Women’s HealthAlbert Einstein College of Medicine and Montefiore Medical CenterBronxUSA

Personalised recommendations