Cancer Immunology, Immunotherapy

, Volume 57, Issue 7, pp 1029–1038 | Cite as

Activation of cytotoxic T lymphocytes against CML28-bearing tumors by dendritic cells transduced with a recombinant adeno-associated virus encoding the CML28 gene

  • Li-Hua Xie
  • Fion Wan-Yee Sin
  • Samuel Chak-Sum Cheng
  • Ying-Kit Cheung
  • Kin-Tak Chan
  • Yi Xie
  • Yong Xie
Original Article


Induction of anti-tumor immune responses by dendritic cells (DCs) transduced with a recombinant adeno-associated virus type 2 (rAAV2) encoding tumor antigens is considered a promising approach for cancer vaccine development. CML28, a novel antigen with the properties of cancer/testis (CT) antigens, is an attractive target for antigen-specific immunotherapy. Here we investigated the feasibility of inducing CML28-specific cytotoxic T lymphocyte (CTL) responses using DCs transduced with the rAAV2 vectors containing the CML28 gene (rAAV/CML28). Using an adenovirus-free packaging system, rAAV/CML28 was generated. The transduction efficiency of rAAV/CML28 in DCs increased in a multiplicity of infection (MOI)-dependent manner. The rAAV/CML28 transduction did not impair DC maturation, but even enhanced the CD80 expression. The rAAV/CML28-transduced DCs induced CML28-specific CTLs which exhibited a MHC class I-mediated antigen-specific lytic activity against CML28-bearing tumor cell lines (HepG2 and MCF-7) as well as the primary leukemia blasts. These findings suggest that rAAV/CML28-transduced DCs vaccine may serve as a feasible approach for the treatment of CML28-associated cancers.


CML28 Adeno-associated virus Dendritic cell-based vaccine Cytotoxic T lymphocyte Cancer immunotherapy 



We express our gratitude to Professor Paul L. Hermonat and Dr. Yong Liu (University of Arkansas, Little Rock, AR, US) for their technical support.


  1. 1.
    June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117:1466–1476PubMedCrossRefGoogle Scholar
  2. 2.
    Antonia S, Mulé JJ, Weber JS (2004) Current developments of immunotherapy in the clinic. Curr Opin Immunol 16:130–136PubMedCrossRefGoogle Scholar
  3. 3.
    Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600PubMedCrossRefGoogle Scholar
  4. 4.
    Moran TP, Burgents JE, Long B, Ferrer I, Jaffee EM, Tisch RM, Johnston RE, Serody JS (2007) Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice. Vaccine 25:6604–6612PubMedCrossRefGoogle Scholar
  5. 5.
    Santin AD, Bellone S, Palmieri M, Ravaggi A, Romani C, Tassi R, Roman JJ, Burnett A, Pecorelli S, Cannon MJ (2006) HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol 100:469–478PubMedCrossRefGoogle Scholar
  6. 6.
    Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Bröcker EB, Steinman RM, Enk A, Kämpgen E, Schuler G (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669–1678PubMedCrossRefGoogle Scholar
  7. 7.
    Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667PubMedCrossRefGoogle Scholar
  8. 8.
    Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117:1195–1203PubMedCrossRefGoogle Scholar
  9. 9.
    Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647PubMedCrossRefGoogle Scholar
  10. 10.
    Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188:22–32PubMedCrossRefGoogle Scholar
  11. 11.
    Jäger E, Jäger D, Karbach J, Chen YT, Ritter G, Nagata Y, Gnjatic S, Stockert E, Arand M, Old LJ, Knuth A (2000) Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101–0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med 191:625–630PubMedCrossRefGoogle Scholar
  12. 12.
    Nishiyama T, Tachibana M, Horiguchi Y, Nakamura K, Ikeda Y, Takesako K, Murai M (2001) Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide. Clin Cancer Res 7:23–31PubMedGoogle Scholar
  13. 13.
    Zendman AJ, Ruiter DJ, Van Muijen GN (2003) Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 194:272–288PubMedCrossRefGoogle Scholar
  14. 14.
    Yang XF, Wu CJ, Chen L, Alyea EP, Canning C, Kantoff P, Soiffer RJ, Dranoff G, Ritz J (2002) CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res 62:5517–5522PubMedGoogle Scholar
  15. 15.
    Wu CJ, Biernacki M, Kutok JL, Rogers S, Chen L, Yang XF, Soiffer RJ, Ritz J (2005) Graft-versus-leukemia target antigens in chronic myelogenous leukemia are expressed on myeloid progenitor cells. Clin Cancer Res 11:4504–4511PubMedCrossRefGoogle Scholar
  16. 16.
    Wu CJ, Yang XF, McLaughlin S, Neuberg D, Canning C, Stein B, Alyea EP, Soiffer RJ, Dranoff G, Ritz J (2000) Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia. J Clin Invest 106:705–714PubMedCrossRefGoogle Scholar
  17. 17.
    Yang XF, Wu CJ, McLaughlin S, Chillemi A, Wang KS, Canning C, Alyea EP, Kantoff P, Soiffer RJ, Dranoff G, Ritz J (2001) CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci USA 98:7492–7497PubMedCrossRefGoogle Scholar
  18. 18.
    Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Zhan D, Pecorelli S, Parham GP, Cannon MJ (1999) Induction of human papillomavirus-specific CD4(+)and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer. J Virol 73:5402–5410PubMedGoogle Scholar
  19. 19.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332PubMedCrossRefGoogle Scholar
  20. 20.
    Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J (2000) Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1RNA. J Immunol 165:5713–5719PubMedGoogle Scholar
  21. 21.
    Paglia P, Chiodoni C, Rodolfo M, Colombo MP (1996) Murine dendritic cells loaded in vitro with soluble protein prime cytotoxicT lymphocytes against tumor antigen in vivo. J Exp Med 183:317–322PubMedCrossRefGoogle Scholar
  22. 22.
    Russo V, Tanzarella S, Dalerba P, Rigatti D, Rovere P, Villa A, Bordignon C, Traversari C (2000) Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc Natl Acad Sci USA 97:2185–2190PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou H, Zhang D, Wang Y, Dai M, Zhang L, Liu W, Liu D, Tan H, Huang Z (2006) Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem Biophys Res Commun 347:200–207PubMedCrossRefGoogle Scholar
  24. 24.
    Han JF, Zhao TT, Liu HL, Lin ZH, Wang HM, Ruan ZH, Zou LY, Wu YZ (2006) Identification of a new HLA-A*0201-restricted cytotoxic T lymphocyte epitope from CML28. Cancer Immunol Immunother 55:1575–1583PubMedCrossRefGoogle Scholar
  25. 25.
    Arthur JF, Butterfield LH, Roth MD, Bui LA, Kiertscher SM, Lau R, Dubinett S, Glaspy J, McBride WH, Economou JS (1997) A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 4:17–25PubMedGoogle Scholar
  26. 26.
    Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507–529PubMedCrossRefGoogle Scholar
  27. 27.
    Li C, Bowles DE, van Dyke T, Samulski RJ (2005) Adeno-associated virus vectors:potential applications for cancer gene therapy. Cancer Gene Ther 12:913–925PubMedCrossRefGoogle Scholar
  28. 28.
    Sun JY, Krouse RS, Forman SJ, Senitzer D, Sniecinski I, Chatterjee S, Wong KK Jr (2002) Immunogenicity of a p210(BCR-ABL) fusion domain candidate DNA vaccine targeted to dendritic cells by a recombinant adeno-associated virus vector in vitro. Cancer Res 62:3175–3183PubMedGoogle Scholar
  29. 29.
    Ponnazhagan S, Mahendra G, Curiel DT, Shaw DR (2001) Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. J Virol 75:9493–9501PubMedCrossRefGoogle Scholar
  30. 30.
    Chiriva-Internati M, Liu Y, Salati E, Zhou W, Wang Z, Grizzi F, Roman JJ, Lim SH, Hermonat PL (2002) Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papilloma-virus type 16 E7 antigen gene transduction into dendritic cells. Eur J Immunol 32:30–38PubMedCrossRefGoogle Scholar
  31. 31.
    Mahadevan M, Liu Y, You C, Luo R, You H, Mehta JL, Hermonat PL (2007) Generation of robust cytotoxic T lymphocytes against prostate specifc antigen by transduction of dendritic cells using protein and recombinant adeno-associated virus. Cancer Immunol Immunother 56:1615–24PubMedCrossRefGoogle Scholar
  32. 32.
    Cheung YK, Cheng SC, Sin FW, Chan KT, Xie Y (2007) Induction of T-cell response by a DNA vaccine encoding a novel HLA-A*0201 severe acute respiratory syndrome coronavirus epitope. Vaccine 25:6070–6077PubMedCrossRefGoogle Scholar
  33. 33.
    Chan RC, Pang XW, Wang YD, Chen WF, Xie Y (2004) Transduction of dendritic cells with recombinant adenovirus encoding HCA661 activates autologous cytotoxic T lymphocytes to target hepatoma cells. Br J Cancer 90:1636–1643PubMedCrossRefGoogle Scholar
  34. 34.
    Wang XH, Qin Y, Hu MH, Xie Y (2005) Dendritic cells pulsed with gp96-peptide complexes derived from human hepatocellular carcinoma (HCC) induce specific cytotoxic T lymphocytes. Cancer Immunol Immunother 54:971–980PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Han KJ, Pang XW, Vaughan HA, Qu W, Dong XY, Peng JR, Zhao HT, Rui JA, Leng XS, Cebon J, Burgess AW, Chen WF (2002) Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J Immunol 169:1102–1109PubMedGoogle Scholar
  36. 36.
    Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Kabach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A (2000) Monitoring CD8T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 97:4760–4765PubMedCrossRefGoogle Scholar
  37. 37.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRefGoogle Scholar
  38. 38.
    Jaraquemada D, Marti M, Long EO (1990) An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells. J Exp Med 172:947–954PubMedCrossRefGoogle Scholar
  39. 39.
    Yang Y, Su Q, Wilson JM (1996) Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 70:7209–7212PubMedGoogle Scholar
  40. 40.
    Jooss K, Yang Y, Fisher KJ, Wilson JM (1998) Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 72:4212–4223PubMedGoogle Scholar
  41. 41.
    Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N (1998) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188:1359–1368PubMedCrossRefGoogle Scholar
  42. 42.
    Summerford C, Bartlett JS, Samulski RJ (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5:78–82PubMedCrossRefGoogle Scholar
  43. 43.
    Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Secondstrand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70:3227–3234PubMedGoogle Scholar
  44. 44.
    Chiriva-Internati M, Liu Y, Weidanz JA, Grizzi F, You H, Zhou W, Bumm K, Barlogie B, Mehta JL, Hermonat PL (2003) Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 102:3100–3107PubMedCrossRefGoogle Scholar
  45. 45.
    Veron P, Allo V, Riviere C, Bernard J, Douar AM, Masurier C (2007) Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2. J Virol 81:5385–5394PubMedCrossRefGoogle Scholar
  46. 46.
    Aldrich WA, Ren C, White AF, Zhou SZ, Kumar S, Jenkins CB, Shaw DR, Strong TV, Triozzi PL, Ponnazhagan S (2006) Enhanced transduction of mouse bone marrow-derived dendritic cells by repetitive infection with self-complementary adeno-associated virus 6 combined with immunostimulatory ligands. Gene Ther 13:29–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Li-Hua Xie
    • 1
    • 2
  • Fion Wan-Yee Sin
    • 1
  • Samuel Chak-Sum Cheng
    • 1
  • Ying-Kit Cheung
    • 1
  • Kin-Tak Chan
    • 1
  • Yi Xie
    • 2
  • Yong Xie
    • 1
  1. 1.Department of BiologyThe Hong Kong University of Science and TechnologyKowloonHong Kong, China
  2. 2.Department of Hematology, Huashan Hospital, the Medical CentreFudan UniversityShanghaiChina

Personalised recommendations