Advertisement

Cancer Immunology, Immunotherapy

, Volume 57, Issue 7, pp 963–975 | Cite as

CD4 and CD8 T cell responses to tumour-associated Epstein–Barr virus antigens in nasopharyngeal carcinoma patients

  • Xiaorong Lin
  • Nancy H. Gudgeon
  • Edwin P. Hui
  • Hui Jia
  • Xue Qun
  • Graham S. Taylor
  • Martin C. N. M. Barnardo
  • C. Kit Lin
  • Alan B. RickinsonEmail author
  • Anthony T. C. Chan
Original Article

Abstract

Nasopharyngeal carcinoma (NPC), an Epstein–Barr virus (EBV)-associated tumour common in Southern Chinese populations, is a potentially important target for T cell-based immunotherapy. The tumour cells are HLA class I- and II-positive and express a limited subset of EBV latent proteins, namely the nuclear antigen EBNA1 and the latent membrane proteins LMP2 and (in some cases) LMP1. To ask whether the tumour develops in the presence of a potentially protective host response or in its absence, we set out to determine the prevailing levels of CD4+ and CD8+ T cell memory to these proteins in NPC patients at tumour diagnosis. We first screened healthy Chinese donors against Chinese strain EBNA1, LMP1 and LMP2 sequences in Elispot assays of interferon-γ release and identified the immunodominant CD4+ and CD8+ epitope peptides presented by common Chinese HLA alleles. Then, comparing 60 patients with >70 healthy controls on peptide epitope mini-panels, we found that T cell memory to CD4 epitopes in all three proteins was unimpaired in the blood of patients at diagnosis. In most cases NPC patients also showed detectable responses to CD8 epitopes relevant to their HLA type, the one consistent exception being the absence in patients of a B*4001-restricted response to LMP2. We infer that NPC arises in patients whose prevailing levels of T cell memory to tumour-associated EBV proteins is largely intact; the therapeutic goal must therefore be to re-direct the existing memory repertoire more effectively against antigen-expressing tumour cells.

Keywords

Epstein–Barr virus Nasopharyngeal carcinoma CD4 CD8 T cell 

Notes

Acknowledgments

This work was supported by Cancer Research UK, by the Hong Kong Cancer Fund and by the Royal Society, London. We thank Dr. Stuart Collins (CR-UK Clinical Trials Unit, University of Birmingham) for statistical advice.

Supplementary material

262_2007_427_MOESM1_ESM.pdf (52 kb)
Supplementary material (PDF 53 kb)

References

  1. 1.
    Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen P, Kurilla MG, Frappier L, Rickinson A (1997) Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7(6):791–802PubMedCrossRefGoogle Scholar
  2. 2.
    Blake N, Haigh T, Shaka’a G, Croom-Carter D, Rickinson A (2000) The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 165(12):7078–7087PubMedGoogle Scholar
  3. 3.
    Bontkes HJ, de Gruijl TD, van den Muysenberg AJ, Verheijen RH, Stukart MJ, Meijer CJ, Scheper RJ, Stacey SN, Duggan-Keen MF, Stern PL, Man S, Borysiewicz LK, Walboomers JM (2000) Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes in women with cervical neoplasia. Int J Cancer 88(1):92–98PubMedCrossRefGoogle Scholar
  4. 4.
    Brooks JM, Murray RJ, Thomas WA, Kurilla MG, Rickinson AB (1993) Different HLA-B27 subtypes present the same immunodominant Epstein–Barr virus peptide. J Exp Med 178(3):879–887PubMedCrossRefGoogle Scholar
  5. 5.
    Burrows SR, Elkington RA, Miles JJ, Green KJ, Walker S, Haryana SM, Moss DJ, Dunckley H, Burrows JM, Khanna R (2003) Promiscuous CTL recognition of viral epitopes on multiple human leukocyte antigens: biological validation of the proposed HLA A24 supertype. J Immunol 171(3):1407–1412PubMedGoogle Scholar
  6. 6.
    Chua D, Huang J, Zheng B, Lau SY, Luk W, Kwong DL, Sham JS, Moss D, Yuen KY, Im SW, Ng MH (2001) Adoptive transfer of autologous Epstein–Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int J Cancer 94(1):73–80PubMedCrossRefGoogle Scholar
  7. 7.
    Comoli P, Palma RD, Siena S, Nocera A, Basso S, Galdo FD, Schiavo R, Carminati O, Tagliamacco A, Abbate GF, Locatelli F, Maccario R, Pedrazzoli P (2004) Adoptive transfer of allogeneic Epstein–Barr virus (EBV)-specific cytotoxic T cells with in vitro antitumor activity boosts LMP2-specific immune response in a patient with EBV-related nasopharyngeal carcinoma. Ann Oncol 15(1):113–117PubMedCrossRefGoogle Scholar
  8. 8.
    Comoli P, Pedrazzoli P, Maccario R, Basso S, Carminati O, Labirio M, Schiavo R, Secondino S, Frasson C, Perotti C, Moroni M, Locatelli F, Siena S (2005) Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein–Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol 23(35):8942–8949PubMedCrossRefGoogle Scholar
  9. 9.
    de Gruijl TD, Bontkes HJ, Walboomers JM, Stukart MJ, Doekhie FS, Remmink AJ, Helmerhorst TJ, Verheijen RH, Duggan-Keen MF, Stern PL, Meijer CJ, Scheper RJ (1998) Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res 58(8):1700–1706PubMedGoogle Scholar
  10. 10.
    de Jong A, van Poelgeest MIE, van der Hulst JM, Drijfhout JW, Fleuren GJ, Melief CJM, Kenter G, Offringa R, van der Burg SH (2004) Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 64(15):5449–5455PubMedCrossRefGoogle Scholar
  11. 11.
    Edwards RH, Seillier-Moiseiwitsch F, Raab-Traub N (1999) Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology 261(1):79–95PubMedCrossRefGoogle Scholar
  12. 12.
    Gottschalk S, Ng CY, Perez M, Smith CA, Sample C, Brenner MK, Heslop HE, Rooney CM (2001) An Epstein–Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 97(4):835–843PubMedCrossRefGoogle Scholar
  13. 13.
    Haque T, Wilkie GM, Taylor C, Amlot PL, Murad P, Iley A, Dombagoda D, Britton KM, Swerdlow AJ, Crawford DH (2002) Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360(9331):436–442PubMedCrossRefGoogle Scholar
  14. 14.
    Heslop HE, Rooney CM (1997) Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immunol Rev 157:217–222PubMedCrossRefGoogle Scholar
  15. 15.
    Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol 25:587–617PubMedCrossRefGoogle Scholar
  16. 16.
    Ito Y, Demachi-Okamura A, Ohta R, Akatsuka Y, Nishida K, Tsujimura K, Morishima Y, Takahashi T, Kuzushima K (2007) Full-length EBNA1 mRNA-transduced dendritic cells stimulate cytotoxic T lymphocytes recognizing a novel HLA-Cw*0303- and -Cw*0304-restricted epitope on EBNA1-expressing cells. J Gen Virol 88(Pt 3):770–780PubMedCrossRefGoogle Scholar
  17. 17.
    Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PAH (2004) Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 173(12):7481–7489PubMedGoogle Scholar
  18. 18.
    Khanna R, Burrows SR, Nicholls J, Poulsen LM (1998) Identification of cytotoxic T cell epitopes within Epstein–Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 28(2):451–458PubMedCrossRefGoogle Scholar
  19. 19.
    Khanna R, Busson P, Burrows SR, Raffoux C, Moss DJ, Nicholls JM, Cooper L (1998) Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC): evidence for efficient presentation of Epstein–Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res 58(2):310–314PubMedGoogle Scholar
  20. 20.
    Khanna R, Bell S, Sherritt M, Galbraith A, Burrows SR, Rafter L, Clarke B, Slaughter R, Falk MC, Douglass J, Williams T, Elliott SL, Moss DJ (1999) Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 96(18):10391–10396PubMedCrossRefGoogle Scholar
  21. 21.
    Khanna R, Moss D, Gandhi M (2005) Technology insight: applications of emerging immunotherapeutic strategies for Epstein–Barr virus-associated malignancies. Nat Clin Pract Oncol 2(3):138–149PubMedCrossRefGoogle Scholar
  22. 22.
    Lau KM, Cheng SH, Lo KW, Lee SAKW, Woo JKS, van Hasselt CA, Lee SP, Rickinson AB, Ng MHL (2007) Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96(4):617–622PubMedCrossRefGoogle Scholar
  23. 23.
    Lautscham G, Haigh T, Mayrhofer S, Taylor G, Croom-Carter D, Leese A, Gadola S, Cerundolo V, Rickinson A, Blake N (2003) Identification of a TAP-independent, immunoproteasome-dependent CD8+ T-cell epitope in Epstein–Barr virus latent membrane protein 2. J Virol 77(4):2757–2761PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SP, Tierney RJ, Thomas WA, Brooks JM, Rickinson AB (1997) Conserved CTL epitopes within EBV latent membrane protein 2: a potential target for CTL-based tumor therapy. J Immunol 158(7):3325–3334PubMedGoogle Scholar
  25. 25.
    Lee SP, Chan AT, Cheung ST, Thomas WA, CroomCarter D, Dawson CW, Tsai CH, Leung SF, Johnson PJ, Huang DP (2000) CTL control of EBV in nasopharyngeal carcinoma (NPC): EBV-specific CTL responses in the blood and tumors of NPC patients and the antigen-processing function of the tumor cells. J Immunol 165(1):573–582PubMedGoogle Scholar
  26. 26.
    Lee SP, Brooks JM, Al-Jarrah H, Thomas WA, Haigh TA, Taylor GS, Humme S, Schepers A, Hammerschmidt W, Yates JL, Rickinson AB, Blake NW (2004) CD8 T cell recognition of endogenously expressed epstein–barr virus nuclear antigen 1. J Exp Med 199(10):1409–1420PubMedCrossRefGoogle Scholar
  27. 27.
    Leen A, Meij P, Redchenko I, Middeldorp J, Bloemena E, Rickinson A, Blake N (2001) Differential immunogenicity of Epstein–Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol 75(18):8649–8659PubMedCrossRefGoogle Scholar
  28. 28.
    Lin CL, Lo WF, Lee TH, Ren Y, Hwang SL, Cheng YF, Chen CL, Chang YS, Lee SP, Rickinson AB, Tam PKH (2002) Immunization with Epstein–Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res 62(23):6952–6958PubMedGoogle Scholar
  29. 29.
    Long HM, Haigh TA, Gudgeon NH, Leen AM, Tsang CW, Brooks J, Landais E, Houssaint E, Lee SP, Rickinson AB, Taylor GS (2005) CD4+ T-cell responses to Epstein–Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol 79(8):4896–4907PubMedCrossRefGoogle Scholar
  30. 30.
    Meij P, Leen A, Rickinson AB, Verkoeijen S, Vervoort MBHJ, Bloemena E, Middeldorp JM (2002) Identification and prevalence of CD8(+) T-cell responses directed against Epstein–Barr virus-encoded latent membrane protein 1 and latent membrane protein 2. Int J Cancer 99(1):93–99PubMedCrossRefGoogle Scholar
  31. 31.
    Meij P, van Esser JWJ, Niesters HGM, van Baarle D, Miedema F, Blake N, Rickinson AB, Leiner I, Pamer E, Lowenberg B, Cornelissen JJ, Gratama JW (2003) Impaired recovery of Epstein–Barr virus (EBV)–specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease. Blood 101(11):4290–4297PubMedCrossRefGoogle Scholar
  32. 32.
    Midgley RS, Bell AI, McGeoch DJ, Rickinson AB (2003) Latent gene sequencing reveals familial relationships among Chinese Epstein–Barr virus strains and evidence for positive selection of A11 epitope changes. J Virol 77(21):11517–11530PubMedCrossRefGoogle Scholar
  33. 33.
    Midgley RS, Bell AI, Yao QY, Croom-Carter D, Hislop AD, Whitney BM, Chan ATC, Johnson PJ, Rickinson AB (2003) HLA-A11-restricted epitope polymorphism among Epstein–Barr virus strains in the highly HLA-A11-positive Chinese population: incidence and immunogenicity of variant epitope sequences. J Virol 77(21):11507–11516PubMedCrossRefGoogle Scholar
  34. 34.
    Münz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM (2000) Human CD4(+) T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J Exp Med 191(10):1649–1660PubMedCrossRefGoogle Scholar
  35. 35.
    Moss DJ, Chan SH, Burrows SR, Chew TS, Kane RG, Staples JA, Kunaratnam N (1983) Epstein–Barr virus specific T-cell response in nasopharyngeal carcinoma patients. Int J Cancer 32(3):301–305PubMedCrossRefGoogle Scholar
  36. 36.
    Nalesnik MA (1998) Clinical and pathological features of post-transplant lymphoproliferative disorders (PTLD). Springer Semin Immunopathol 20(3–4):325–342PubMedCrossRefGoogle Scholar
  37. 37.
    Ong KW, Wilson AD, Hirst TR, Morgan AJ (2003) The B subunit of Escherichia coli heat-labile enterotoxin enhances CD8+ cytotoxic-T-lymphocyte killing of Epstein–Barr virus-infected cell lines. J Virol 77(7):4298–4305PubMedCrossRefGoogle Scholar
  38. 38.
    Paludan C, Bickham K, Nikiforow S, Tsang ML, Goodman K, Hanekom WA, Fonteneau JF, Stevanović S, Münz C (2002) Epstein–Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt’s lymphoma cells. J Immunol 169(3):1593–1603PubMedGoogle Scholar
  39. 39.
    Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044PubMedCrossRefGoogle Scholar
  40. 40.
    Ressing ME, van Driel WJ, Celis E, Sette A, Brandt MP, Hartman M, Anholts JD, Schreuder GM, ter Harmsel WB, Fleuren GJ, Trimbos BJ, Kast WM, Melief CJ (1996) Occasional memory cytotoxic T-cell responses of patients with human papillomavirus type 16-positive cervical lesions against a human leukocyte antigen-A*0201-restricted E7-encoded epitope. Cancer Res 56(3):582–588PubMedGoogle Scholar
  41. 41.
    Rickinson AB, Kieff E (2006) Epstein–Barr virus. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Strauss SE (eds) Fields’ virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2655–2700Google Scholar
  42. 42.
    Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712PubMedCrossRefGoogle Scholar
  43. 43.
    Shedlock DJ, Shen H (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300(5617):337–339PubMedCrossRefGoogle Scholar
  44. 44.
    Sherritt MA, Bharadwaj M, Burrows JM, Morrison LE, Elliott SL, Davis JE, Kear LM, Slaughter RE, Bell SC, Galbraith AJ, Khanna R, Moss DJ (2003) Reconstitution of the latent T-lymphocyte response to Epstein–Barr virus is coincident with long-term recovery from posttransplant lymphoma after adoptive immunotherapy. Transplantation 75(9):1556–1560PubMedCrossRefGoogle Scholar
  45. 45.
    Smets F, Latinne D, Bazin H, Reding R, Otte JB, Buts JP, Sokal EM (2002) Ratio between Epstein–Barr viral load and anti-Epstein–Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease. Transplantation 73(10):1603–1610PubMedCrossRefGoogle Scholar
  46. 46.
    Straathof KC, Leen AM, Buza EL, Taylor G, Huls MH, Heslop HE, Rooney CM, Bollard CM (2005) Characterization of latent membrane protein 2 specificity in CTL lines from patients with EBV-positive nasopharyngeal carcinoma and lymphoma. J Immunol 175(6):4137–4147PubMedGoogle Scholar
  47. 47.
    Straathof KCM, Bollard CM, Popat U, Huls MH, Lopez T, Morriss MC, Gresik MV, Gee AP, Russell HV, Brenner MK, Rooney CM, Heslop HE (2005) Treatment of nasopharyngeal carcinoma with Epstein–Barr virus–specific T lymphocytes. Blood 105(5):1898–1904PubMedCrossRefGoogle Scholar
  48. 48.
    Sun JC, Bevan MJ (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300(5617):339–342PubMedCrossRefGoogle Scholar
  49. 49.
    Tan LC, Gudgeon N, Annels NE, Hansasuta P, O’Callaghan CA, Rowland-Jones S, McMichael AJ, Rickinson AB, Callan MF (1999) A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J Immunol 162(3):1827–1835PubMedGoogle Scholar
  50. 50.
    Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, Khanna R (2004) Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr virus-encoded nuclear antigen 1. J Exp Med 199(10):1421–1431PubMedCrossRefGoogle Scholar
  51. 51.
    Tsang CW, Lin X, Gudgeon NH, Taylor GS, Jia H, Hui EP, Chan ATC, Lin CK, Rickinson AB (2006) CD4+ T-cell responses to Epstein–Barr virus nuclear antigen EBNA1 in Chinese populations are highly focused on novel C-terminal domain-derived epitopes. J Virol 80(16):8263–8266PubMedCrossRefGoogle Scholar
  52. 52.
    Tsuji K, Aizawa M, Sasazuki T (1992) HLA 1991: HLA 1991: proceedings of the 11th international hisocompatibility workshop and conference. Oxford University Press, Oxford, UKGoogle Scholar
  53. 53.
    Voo KS, Fu T, Heslop HE, Brenner MK, Rooney CM, Wang RF (2002) Identification of HLA-DP3-restricted peptides from EBNA1 recognized by CD4(+) T cells. Cancer Res 62(24):7195–7199PubMedGoogle Scholar
  54. 54.
    Voo KS, Fu T, Wang HY, Tellam J, Heslop HE, Brenner MK, Rooney CM, Wang RF (2004) Evidence for the presentation of major histocompatibility complex class I-restricted Epstein–Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J Exp Med 199(4):459–470PubMedCrossRefGoogle Scholar
  55. 55.
    Warrino DE, Olson WC, Knapp WT, Scarrow MI, D’Ambrosio-Brennan LJ, Guido RS, Edwards RP, Kast WM, Storkus WJ (2004) Disease-stage variance in functional CD4(+) T-cell responses against novel pan-human leukocyte antigen-D region presented human papillomavirus-16 E7 epitopes. Clin Cancer Res 10(10):3301–3308PubMedCrossRefGoogle Scholar
  56. 56.
    Whitney BM, Chan ATC, Rickinson AB, Lee SP, Lin CK, Johnson PJ (2002) Frequency of Epstein–Barr virus-specific cytotoxic T lymphocytes in the blood of Southern Chinese blood donors and nasopharyngeal carcinoma patients. J Med Virol 67(3):359–363PubMedCrossRefGoogle Scholar
  57. 57.
    Yao Y, Minter HA, Chen X, Reynolds GM, Bromley M, Arrand JR (2000) Heterogeneity of HLA and EBER expression in Epstein–Barr virus-associated nasopharyngeal carcinoma. Int J Cancer 88(6):949–955PubMedCrossRefGoogle Scholar
  58. 58.
    Zheng BJ, Ng SP, Chua DTT, Sham JST, Kwong DLW, Lam CK, Ng MH (2002) Peripheral gamma delta T-cell deficit in nasopharyngeal carcinoma. Int J Cancer 99(2):213–217PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xiaorong Lin
    • 1
  • Nancy H. Gudgeon
    • 2
  • Edwin P. Hui
    • 1
    • 3
  • Hui Jia
    • 2
  • Xue Qun
    • 1
  • Graham S. Taylor
    • 2
  • Martin C. N. M. Barnardo
    • 4
  • C. Kit Lin
    • 5
  • Alan B. Rickinson
    • 2
    Email author
  • Anthony T. C. Chan
    • 1
    • 3
  1. 1.Sir Y. K. Pao Centre for Cancer, Hong Kong Cancer InstituteThe Chinese University of Hong KongHong KongChina
  2. 2.Cancer Research UK Institute for Cancer StudiesUniversity of BirminghamBirminghamUK
  3. 3.Department of Clinical OncologyThe Chinese University of Hong KongHong KongChina
  4. 4.Department of Transplant Immunology, Oxford Transplant CentreUniversity of Oxford, Churchill HospitalOxfordUK
  5. 5.Hong Kong Red Cross Blood Transfusion ServiceKowloon, Hong KongChina

Personalised recommendations